Key molecule suppresses growth of cancerous liver tumors, study finds

(Medical Xpress)—A molecule already implicated in a number of diverse cellular functions can suppress the growth of tumors in the liver, a Mayo Clinic Cancer Center study has found. Its name is IQGAP1, and when the molecule is active in the cells that surround a tumor cell, this "tumor microenvironment" becomes less hospitable to cancer growth. When the molecule is deficient, cancer thrives.

Results of the study appear in the . The findings give new insight into , the ability of a tumor to spread from its primary site to distant organs such as the brain, lung or liver. The results also point to new targets for preventing or treating liver metastases, the major cause of death from cancer.

" are intelligent—they talk to the cells in their surroundings to change the way they behave and make the environment supportive of . If we can disrupt the communication between the tumor cells and the tumor microenvironment, we can prevent tumor growth or metastasis in the liver," says senior study author Ningling Kang, Ph.D., a biochemist and at Mayo Clinic.

For certain solid tumors, about 70 to 90 percent of the tumor mass is made up of microenvironment—a complex mix of noncancerous cells, secreted extracellular matrix proteins, and tumor-promoting signaling molecules. This tumor microenvironment supports tumor growth and . Mechanisms regulating the tumor microenvironment are not well understood.

IQGAP1 controls the shape and movement of cells. To study the effects of this molecule on liver metastases, Dr. Kang and her colleagues implanted tumor cells into the livers of mice genetically engineered to lack the molecule.

The implanted tumor cells still had the molecule, but the cells that made up the tumor microenvironment did not. When researchers compared the progression of cancer between mutant and normal mice, they found that mice without the molecule developed more liver metastases. They also followed up these studies in mice by comparing samples of normal and cancerous liver tissues of colorectal cancer patients. They discovered that the levels of IQGAP1 were reduced in the tumor microenvironment of than in the normal tissue, suggesting that the tumor somehow communicates with its surroundings to tamp down the activity of this critical molecule.

This communication went both ways. Through a number of basic functional experiments, Dr. Kang and her colleagues showed that IQGAP1 interacts with and suppresses a powerful signaling molecule called TGF-beta receptor that tells normal cells that surround a tumor cell to become tumor-promoting cells.

"We think that tumor cells come into the liver and give orders to the signaling molecules in the surrounding normal cells to reduce the amount of IQGAP1, thereby creating a good for themselves," Dr. Kang says. "If we can understand exactly how they do this, then we may be able to uncover new therapeutic targets for liver metastasis."

Related Stories

Cellular communication in the cancer microenvironment

Jan 16, 2010

In the February 1st issue of G&D, Dr. Johanna Joyce and colleagues at Memorial Sloan Kettering Cancer Center lend new insight into the mechanism by which tumor-associated macrophages promote malignant progression.

Recommended for you

Why we should vaccinate boys against HPV as well as girls

3 hours ago

Gillian Prue, from the School of Nursing and Midwifery at Queen's University of Belfast, says that the human papillomavirus (HPV) infection is common in men and can lead to genital warts and the development of some head and ...

Generation of tanners see spike in deadly melanoma

15 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

15 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

User comments