Study identifies liver gene that regulates cholesterol and fat blood levels

February 7, 2013

Researchers have identified a microRNA liver gene, miR-27b, which regulates lipid (cholesterol or fat) levels in the blood. This regulator gene controls multiple genes involved in dyslipidemia—abnormal blood cholesterol levels that can contribute to heart disease. Study details published in the February issue of Hepatology, a journal of the American Association for the Study of Liver Diseases (AASLD), describe a new in silico approach to identify the significance of microRNAs in regulating disease-related gene pathways.

The (HGP) was completed in April, 2003 and the world had a map of the 3 billion making up the human genome. One of the HGP leaders was Dr. Francis Collins, currently NIH Director and contributor to the present study. "The HGP provided the basic instruction book for human biology," explains Dr. Collins. "Further , such as the investigation of microRNAs, have built upon the efforts of the HGP to explain how the genome carries out its functions, and helps identify genes involved in the development of disease."

For the present study, lead author Dr. Kasey Vickers from the NIH/NHLBI Lipoprotein Metabolism Section (presently at Vanderbilt University School of Medicine) and colleagues performed high-throughput small RNA sequencing of mouse and detected roughly 150 microRNAs. The team used a novel in silico approach to identify microRNA regulatory hub genes involved in lipid metabolism. In human and mouse livers miR-27b was determined to be the strongest hub with 27 predicted targets.

"We found liver miR-27b levels to be sensitive to high triglycerides (hyperlipidemia) in the blood and liver," said Dr. Vickers. The team reported a nearly 3-fold increase in miR-27b levels in the liver of mice on a high-fat diet, with 42% of calories from fat. In human liver , researchers determined that miR-27b regulates mRNA and of key lipid-metabolism genes (Angptl3 and Gpam). Vickers added, "Using a mouse model of dyslipidemia and atherosclerosis, we found hepatic miR-27b and its target genes to be inversely altered, and thus contributing to risk for cardiovascular disease."

The senior author of the study, Dr. Praveen Sethupathy from the University of North Carolina at Chapel Hill School of Medicine, leads an interdisciplinary laboratory that weaves together computational and experimental approaches to understand the role of microRNAs in complex metabolic diseases. "MicroRNAs are thought to impart stability to gene networks, particularly in the face of changes to the environment, such as diet," he says. "MicroRNAs represent promising therapeutic targets for a variety of metabolic diseases, but a lot more work remains to be done in order to fully appreciate how and when they function."

In a related editorial published in this month's issue of Hepatology, Dr. Carlos Fernández-Hernando from the New York University School of Medicine confirms the emergence of microRNAs in regulating cholesterol and fatty acid metabolism. He writes, "Altogether these data (by Vickers et al.) strongly suggest that miR-27b regulates , but its role in regulating lipid levels in other cells, such as macrophages and neurons, remains unclear." Dr. Fernández-Hernando highlights the importance of the new in silico approach used by the researchers to identify microRNAs in regulating genes involved in the same bodily process, suggesting this method could be used to identify microRNAs in controlling genetic networks.

Explore further: Novel therapeutic target identified to decrease triglycerides and increase 'good' cholesterol

More information: "MicroRNA-27b is a Regulatory Hub in Lipid Metabolism and is Altered in Dyslipidemia." Kasey C. Vickers, Bassem M. Shoucri, Michael G. Levin, Han Wu, Daniel S. Pearson, David Osei-Hwedieh, Francis S. Collins, Alan T. Remaley and Praveen Sethupathy. Hepatology; (DOI: 10.1002/hep.25846); Print Issue Date: February, 2013.

Editorial: "The Emerging Role of miRNAs in the Regulation of Lipid Metabolism." Carlos Fernández-Hernando. Hepatology; (DOI: 10.1002/hep.25960); Print Issue Date: February, 2013.

Related Stories

Hepatitis C virus survives by hijacking liver microRNA: study

January 2, 2012

Viral diseases are still one of the biggest challenges to medical science. Thanks to thousands of years of co-evolution with humans, their ability to harness the biology of their human hosts to survive and thrive makes them ...

Recommended for you

New target could eliminate lurking cancer stem cells

November 27, 2015

Scientists from Trinity College Dublin have identified a novel target that could help to identify 'cancer stem cells' while they are in their inactive state. The scientists could then jolt these cells into action so that ...

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.