Two minds can be better than one: Thought-controlled virtual spacecraft

February 5, 2013

Scientists at the University of Essex have been working with NASA on a project where they controlled a virtual spacecraft by thought alone.

Using BCI (brain-computer interface) technology, they found that combining the of two people could be more accurate in steering a spacecraft than one person. BCIs convert signals generated from the brain into control commands for various applications, including virtual reality and hands-free control.

Researchers at Essex have already been undertaking extensive projects into using BCI to help people with disabilities to enable spelling, mouse control or to control a wheelchair. The research involves the user carrying our certain which the computer then translates into commands to move the wheelchair in different directions.

The University has built-up an for its BCI research and is expanding its work into the new area of collaborative BCI, where tasks are performed by combining the signals of multiple BCI users.

The £500,000 project with 's Jet Propulsion Lab in Pasadena, California, involved two people together steering a virtual spacecraft to a planet using a unique BCI mouse, developed by scientists at Essex.

Using (EEG), the two users wore a cap with electrodes which picked up different patterns in the depending on what they were focusing their attention on a screen – in this case one of the eight directional dots of the cursor. representing the users' chosen direction, as interpreted by the computer, were then merged in real time to produce control commands for steering the spacecraft.

As Professor Riccardo Poli, for the University's School of Computer Science and , explained, the experiment was very intense and involved a lot of concentration. With two people taking part in the test, the results were more accurate as the system could cope if one of the users had a brief lapse in concentration.

Analysis of this collaborative approach showed that two minds could be better than one at producing accurate trajectories. Combining signals also helped reduce the random "noise" that hinders EEG signals, such as heartbeat, breathing, swallowing and muscle activity.  "When you average signals from two people's brains, the noise cancels out a bit," added Professor Poli.

Professor Poli said an exciting development for BCI research in the future relates to joint decision making, where a physiological signal, like pressing a button, and brain activity can be combined to give a superior result. "It is like measuring someone's gut feeling," added Professor Poli.

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.