Molecule key to sustaining brain communication

February 4, 2013

(Medical Xpress)—Scientists have discovered the powerful role the molecule Myosin VI plays in communication between nerve cells in the brain.

Researchers at the University of Queensland's (UQ) Queensland Brain Institute (QBI) have found that Myosin VI is integral to maintaining the neurotransmitter release that allows neurons to pass on information to other neurons.

The discovery made by Vanesa Tomatis, a PhD student in Associate Professor Frederic Meunier's laboratory, demonstrates how Myosin VI has the impressive ability to anchor secretory vesicles that are at least 5,000 times greater in size, near their release site.

"By tethering and anchoring secretory granules, Myosin VI helps to maintain an active pool of vesicles near the plasma membrane, which is key to sustaining communication between ," Associate Professor Meunier said.

Associate Professor Meunier and his team are now looking to better understand how the Myosin VI manages to grab and hold vesicles through the use of super resolution microscopy.

They hope the discovery will lead to new ways to reinstate or regulate neuronal communication in various .

The paper was published in The on February 4, 2013.

Explore further: A special type of collagen may help protect the brain against Alzheimer's disease

Related Stories

Scientists uncover new mechanism of memory formation

August 25, 2010

Scientists from the Florida campus of The Scripps Research Institute have discovered a mechanism that plays a critical role in the formation of long-term memory. The findings shed substantial new light on aspects of how memory ...

Motors on a mission

March 25, 2011

(PhysOrg.com) -- In a new study, Don Arnold and collaborators show that a microscopic motor drives axonal proteins to the right location in a neuron.

Study brings secrets of brain cell communication closer

October 5, 2011

(Medical Xpress) -- Researchers at The University of Queensland's Queensland Brain Institute (QBI) have taken a significant step towards unravelling the mechanism by which communication between brain cells occurs.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.