Study finds mutations linked to relapse of childhood leukemia

February 3, 2013

After an intensive three-year hunt through the genome, medical researchers have pinpointed mutations that leads to drug resistance and relapse in the most common type of childhood cancer—the first time anyone has linked the disease's reemergence to specific genetic anomalies.

The discovery, co-lead by William L. Carroll, MD, director of NYU Langone Medical Center's Cancer Institute, is reported in a study published online February 3, 2013, in .

"There has been no progress in curing children who relapse, in spite of giving them very high doses of chemotherapy and ," said Dr. Carroll.

The discovery suggests how scientists may be able to thwart a dangerous form of , a rapidly progressing blood-borne cancer that strikes about 6,000 people in the United States every year and accounts for more than one in four . Eventually, such information could help doctors detect the early emergence of chemotherapy-resistant in patients and switch to a different before the disease can fully reassert itself.

In acute lymphoblastic leukemia, abbreviated ALL, the body's bone marrow produces an abnormally large number of lymphocytes, or . Improved treatments have increased the overall cure rate to roughly 80 percent. But Dr. Carroll says the prognosis is especially dire for some 20 percent of patients who relapse.

Medical researchers have suspected that the reemergence of disease could be due to , but previous efforts had not uncovered any definitive pathway. For the new study, led by Dr. Carroll and graduate student Julia Meyer, researchers at five U.S. institutions spent three years analyzing multiple bone marrow samples from pediatric ALL patients for more clues to the disease's progression.

With the help of the Children's , a multi-institutional clinical trials consortium supported by the , the researchers analyzed the entire transcriptome—or the full sequence of RNA —from 10 children with pediatric B lymphoblastic leukemia, the most common subtype of ALL. RNA is an essential intermediary in the cellular process that uses DNA blueprints to assemble specific proteins, thus a leukemia transcriptome gives researchers a view of all active genes within the cancerous cells.

For each patient, the team pieced together a complete sequence of RNA extracted from the bone marrow at three time points: at diagnosis, during remission, and upon relapse some months or years later. All told, the project required the researchers to sequence, or spell out, 100 billion letters of RNA. By comparing the before and after sequences, the team found that each patient had acquired between one and six mutations that changed the genetic code over the course of the disease. In some cases researchers were able to detect these mutations in a very small subset (0.01 percent) of the tissue samples at diagnosis so that these cells likely expanded because their drug resistant properties provided the leukemia cells with a survival advantage.

In all, the team documented 20 relapse-specific mutations—none of which had previously been implicated in ALL recurrences. Intriguingly, two patients harbored a mutation in the same gene, NT5C2, which encodes a protein that normally regulates some building blocks used to construct DNA but also can degrade an important class of drugs called purine analogues used in ALL therapy.

When the researchers fully sequenced the NT5C2 gene in 61 other cases in which pediatric ALL patients had relapsed, they found five more mutations that altered the gene's coding region. Further experiments suggested that these NT5C2 mutations all increased the protein's enzymatic activity, making the cancer cells more resistant to a chemotherapy treatment designed to force the cells to kill themselves. All seven patients with NT5C2 mutations relapsed within three years of the initial diagnosis—an early, particularly hard-to-treat re-emergence likely mediated by the drug resistance.

Armed with the new knowledge, Dr. Carroll says doctors may be better equipped to identify patients likely to relapse. "We plan to test the feasibility of screening patients during therapy using sophisticated sequencing technology to pick up low-level mutations in NT5C2 and other genes indicating that a mutant clone is growing," he says. His team is researching whether that advance warning could allow doctors to administer separate drugs to beat back the cancer cells, and is also working on a strategy to directly inhibit the mutant enzyme.

Explore further: Gene responsible for relapses in young leukemia patients

Related Stories

Gene responsible for relapses in young leukemia patients

October 26, 2011

One of the causes of resistance to cancer treatment in children is now beginning to be elucidated. Acute lymphoblastic leukemia patients with a particular form of the ATF5 gene are at higher risk of having a relapse when ...

Chemotherapy may influence leukemia relapse: research

January 11, 2012

The chemotherapy drugs required to push a common form of adult leukemia into remission may contribute to DNA damage that can lead to a relapse of the disease in some patients, findings of a new study suggest.

Scientists map genetic evolution of leukemia

March 14, 2012

The diagnosis of myelodysplastic syndrome, a blood cancer, often causes confusion. While some patients can be treated with repeated blood transfusions, others require chemotherapy, leaving some uncertainty about whether the ...

Recommended for you

Competing mice reveal genetic defects

September 30, 2015

In recent years, University of Utah biologists showed that when wild-type mice compete in seminatural "mouse barns" for food, territory and mates, they can suffer health problems not revealed by conventional toxicity tests ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.