Pulmonary fibrosis: Between a ROCK and a hard place

Pulmonary fibrosis is a scarring or thickening of the lungs that causes shortness of breath, a dry cough, fatigue, chest discomfort, weight loss, a decrease in the ability of the lungs to transmit oxygen to the blood stream, and, eventually, heart failure. Cells known as myofibroblasts normally secrete materials that are required for wound healing; once the wound has closed, the cells disappear. In pulmonary fibrosis, the myofibroblasts stick around, continuing to secrete wound healing factors that cause fibrosis in the lungs.

In this issue of the , Yong Zhou and colleagues at the University of Alabama at Birmingham identified a mechanosensitive cellular signaling pathway in myofibroblasts that is activated by the hardening of tissue that has become fibrotic.

Activation of this pathway promotes myofibroblast survival and prevents the normal disappearance of these cells after completion of wound healing. The pathway is dependent on a protein known as ROCK.

Zhou and colleagues found that a drug that inhibits ROCK, fasudil, attenuates the pro-survival pathway and causes myofibroblasts to die. Further, fasudil treatment protected mice from injury-induced .

These studies suggest that ROCK inhibitors could be used to treat . In a companion Attending Physician article, Dean Sheppard of the University of California, San Francisco, discusses the feasibility of using ROCK inhibitors in a clinical setting.

More information: Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis, Journal of Clinical Investigation, 2013. doi:10.1172/JCI66700
ROCKing pulmonary fibrosis, Journal of Clinical Investigation, 2013. doi:10.1172/JCI68417

add to favorites email to friend print save as pdf

Related Stories

Scarred lungs leave trail of beta arrestins

Mar 28, 2011

Targeting a family of signaling proteins called beta arrestins may stop the life-threatening scarring and thickening of lungs associated with pulmonary fibrosis, reports a new Science study in mice.

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments