The quest for a better bionic hand

For an amputee, replacing a missing limb with a functional prosthetic can alleviate physical or emotional distress and mean a return of vocational ability or cosmetics. Studies show, however, that up to 50 percent of hand amputees still do not use their prosthesis regularly due to less than ideal functionality, appearance, and controllability. But Silvestro Micera, of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, is paving the way for new, smart prosthetics that connect directly to the nervous system. The benefits are more versatile prosthetics with intuitive motor control and realistic sensory feedback—in essence, they could one day return dexterity and the sensation of touch to an amputee.

At the 2013 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston, Micera reports the results of previous work conducting a four-week clinical trial that improved sensory feedback in amputees by using intraneural electrodes implanted into the median and ulnar nerves. This interface holds great promise because of its ability to create an intimate and natural connection with the nerves, and because it is less invasive than other methods. It also provides fast, intuitive, bidirectional flow of information between the nervous system and the prosthetic, resulting in a more realistic experience and ultimately improved function.

"We could be on the cusp of providing new and more effective clinical solutions to in the next years," says Micera, who is Head of the Translational Laboratory at EPFL and Professor at the Scuola Superiore Sant'Anna in Italy. Micera and colleagues tested their system by implanting intraneural electrodes into the nerves of an amputee. The electrodes stimulated the sensory peripheral system, delivering different types of touch feelings. Then the researchers analyzed the motor recorded from the nerves and showed that information related to grasping could indeed be extracted. That information was then used to control a hand placed near the subject but not physically attached to the arm of the amputee.

At AAAS in Boston, Micera also describes his recent activities to improve the efficacy of this approach and announces a new clinical trial starting soon as part of the Italian Ministry of Health's NEMESIS project, under the clinical supervision of Prof. Paolo M. Rossini. This new trial carries this research a step further by connecting the hand directly to the patient for the first real-time, bidirectional control using peripheral neural signals. Though results are not yet available, the researchers hope to find still further improvement in the sensory feedback and overall control of the prosthetics with this new method.

add to favorites email to friend print save as pdf

Related Stories

A helping hand for prosthetics

Apr 11, 2012

An EU-funded project has developed an artificial hand that will revolutionise the lives of amputees. The so-called Smarthand has all the basic functions of its real counterpart including sensitivity and motor ...

Scientists: Man controlled robotic hand with thoughts

Dec 02, 2009

(AP) -- A group of European scientists said Wednesday they have successfully connected a robotic hand to an amputee, allowing him to feel sensations in the artificial limb and control it with his thoughts.

Recommended for you

The impact of bacteria in our guts

19 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

20 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

21 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments