More than just looking: Role of tiny eye movements explained

February 21, 2013

Have you ever wondered whether it's possible to look at two places at once? Because our eyes have a specialized central region with high visual acuity and good color vision, we must always focus on one spot at a time in order to see our environment. As a result, our eyes constantly jump back and forth as we look around.

But what if – when you are looking at an object – your brain also allowed you to "look" somewhere else at the same time, out of the corner of your eye, as it were? Now, a scientist at the Werner Reichardt Centre for Integrative Neuroscience (CIN), which is funded by the German Excellence initiative at Tübingen University, has found a possible explanation for how this might happen.

Ziad Hafed, the leader of the of Active Vision Junior Research Group at CIN, wondered about the role of a type of tiny microscopic eye movement that occurs when we fix our on something, called a microsaccade. "Microsaccades are sort of enigmatic," Hafed says. They are movements of the eye which occur at exactly the moment when we are trying to look at something steadily – i.e., when we are trying to prevent our eyes from moving.

It was long thought that microsaccades were nothing but random, inconsequential , but Hafed wondered whether the mere unconscious preparation to generate these tiny eye movements can alter and effectively allow you to "see" out of the corner of your eye. He found that before generating a microsaccade, the brain re-organizes its processing to alter how you perceive things.

"Imagine that you are the coach of a football team," Hafed says. "You would normally ask your defenders to spread out across the field in order to provide good coverage during match play. However, in preparation for an upcoming corner kick by your opposing team, you would re-organize your defenders, assigning two of them to become temporary goalkeepers and protect the goal.

What I found was evidence for a similar strategy in the visual brain before microsaccades," says Hafed. That is, in preparation for generating a tiny microscopic eye movement, the brain – the "coach" – causes a subtle re-organization of the visual system, and thus alters how you might see out of the corner of your eyes (see diagram).

Using a series of experiments on human participants, coupled with computational modeling of the human visual system, Hafed asked participants to fix their attention on a spot that appeared on a screen in front of them, while he carefully measured their tiny microscopic eye movements. Hafed then probed the participants' ability to look at two places at once by testing their peripheral vision. He found that in preparation to generate a tiny microsaccade, the participants demonstrated remarkable changes in their ability to process visual inputs. In the periphery, tiny microscopic eye movements effectively improved the capacity to direct visual input – from around where gaze is fixed – towards the brain. Hafed's results, which are described in the leading science journal Neuron, thus demonstrate an important functional role for these tiny, microscopic, and "enigmatic" movements of the eye in helping us to perceive our environment.

Hafed's results not only help us understand a previously puzzling phenomenon; there are also potentially wide-ranging applications arising from this work. In particular, this work can affect how we design computer and machine user interfaces. For example, using knowledge about the whole range of eye movements we constantly make, including microscopic ones, our future "smart user interfaces" can ensure that things likely to attract our attention are not displayed in places where they can be distracting. Conversely, if we need to locate something that should attract our attention – a warning light in a control room, for instance – this same approach will also be useful. As Hafed put it, " would essentially be a window on our minds."

Explore further: Seeing movement: Why the world in our head stays still when we move our eyes

More information: Hafed, Z. M. (2013). Alteration of visual perception prior to microsaccades. Neuron, 20 Feb 2013, DOI:

Related Stories

Barrow researchers unravel illusion

May 1, 2012

Barrow Neurological Institute researchers Jorge Otero-Millan, Stephen Macknik, and Susana Martinez-Conde share the recent cover of the Journal of Neuroscience in a compelling study into why illusions trick our brains. Barrow ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.