Small groups of brain cells store concepts for memory formation– from Luke Skywalker to your grandmother

Concepts in our minds – from Luke Skywalker to our grandmother - are represented by their own distinct group of neurons, according to new research involving a University of Leicester neuroscientist.

The research, by University of Leicester neuroscientist Professor Rodrigo Quian Quiroga together with Professor Itzhak Fried, of the UCLA David Geffen School of Medicine, Tel Aviv Sourasky Medical Center and Tel Aviv University, and Professor Christof Koch, of the California Institute of Technology and Allen Institute for , Seattle, is featured in a recent article of the Scientific American magazine.

Recent experiments during brain surgeries have shown that small groups of are responsible for encoding memories of specific people or objects.

These may also represent different variations of one thing – from the name of a person to their appearance from many different viewpoints.

The researchers believe that single may be held in as little as thousands of neurons or less – a tiny fraction of the billion or so neurons contained in the medial temporal lobe, which is a memory related structure within the brain.

The group were able to monitor the of consenting patients undergoing surgery to treat epilepsy. This allowed the team to monitor the activity of single neurons in conscious patients while they looked at images on laptop screens, creating and recalling memories.

In previous experiments, they had found that single neurons would 'fire' for specific concepts – such as Luke Skywalker – even when they were viewing images of him from different angles or simply hearing or reading his name.

They have also found that single neurons can also fire to related people and objects – for instance, the neuron that responded to Luke Skywalker also fired to Yoda, another Jedi from Star Wars.

They argue that relatively small groups of neurons hold concepts like Luke Skywalker and that related concepts such as Yoda are held by some but not all of the same neurons. At the same time, a completely separate set of neurons would hold an unrelated concept like Jennifer Aniston.

The group believes this partially overlapping representation of related concepts are the neural underpinnings of encoding associations, a key memory function.

Professor Quian Quiroga said: "After the first thrill when finding neurons in the human hippocampus with such remarkable firing characteristics, converging evidence from experiments we have been carrying out in the last years suggests that we may be hitting one of the key mechanisms of memory formation and recall.

"The abstract representation of concepts provided by these neurons is indeed ideal for representing the meaning of the sensory stimuli around us, the internal representation we use to form and retrieve memories. These concepts cells, we believe, are the building blocks of memory functions."

add to favorites email to friend print save as pdf

Related Stories

New study uncovers brain's code for pronouncing vowels

Aug 21, 2012

(Medical Xpress) -- Scientists have unraveled how our brain cells encode the pronunciation of individual vowels in speech. The discovery could lead to new technology that verbalizes the unspoken words of ...

Recommended for you

New ALS associated gene identified using innovative strategy

18 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

18 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

19 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

22 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

User comments