Study could aid development of new drugs to treat gout

March 19, 2013

Findings from a Loyola University Chicago Stritch School of Medicine study could lead to the development of new drugs to treat gout. The study, led by Liang Qiao, MD, and his colleagues and collaborators, was published March 19 in the journal Nature Communications.

Gout is caused by a buildup of uric acid around joints, typically the big toe, knee or ankles. The immune system revs up to attack uric acid salt crystals, and this immune response causes painful inflammation.

The is mainly activated by calcium that enters a macrophage immune cell through an opening called the calcium channel. There are several types of calcium channels. Researchers found that a particular type of calcium channel, called TRPM2, is responsible for initiating the immune response. (TRPM2 stands for transient receptor potential melastatin 2.)

In , study collaborators from Japan knocked out a gene that is responsible for this calcium channel. Qiao's team then exposed these "knockout" mice and a comparison group of normal mice to uric acid and to a , a compound that also causes inflammation. They found that inflammation was significantly lower in the that lacked the TRPM2 calcium channel. They therefore concluded that disabling the TRPM2 calcium channel could be key to reducing painful inflammation from gout.

The next step will be to design a compound that would block the TRPM2 calcium channel, and then test how well this compound reduces inflammation in an animal model.

The study's findings might also apply to Alzheimer's disease and arteriosclerosis (hardening of the arteries). These two diseases, like gout, have been linked to inflammation. And it is possible that the TRPM2 may be key to initiating the inflammatory response in these two diseases as well. But this has not been proven yet, Qiao said.

The study also could aid in the development of new vaccines. Researchers elsewhere are studying whether liposomes could serve as more effective adjuvants in new vaccines. (An adjuvant is the component in a vaccine that stimulates the immune system to attack a pathogen such as a virus or bacterium). The Loyola study found that only liposomes with either a positive or a negative electric charge are effective in stimulating the immune system.

Liposomes with a neutral charge did not stimulate the immune system.

Qiao, senior author of the study, is a professor in the Department of Microbiology and Immunology at Loyola University Chicago Stritch School of Medicine. Co-authors of the study are Zhenyu Zhong (first author, significant contributor), Yougang Zhai, Shuang Liang and Renzhi Han, all of Loyola University Chicago; Yasou Mori of Kyoto University in Japan; and Fayyaz S. Sutterwala of the University of Iowa.

Explore further: T-cell discovery holds promise for organ transplant and immunodeficiency treatment

Related Stories

Recommended for you

Snapshot turns T cell immunology on its head

October 6, 2015

Challenging a universally accepted, longstanding consensus in the field of immunity requires hard evidence. New research from the Australian Research Council Centre of excellence in advanced Molecular imaging has shown the ...

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.