Astrocyte signaling sheds light on stroke research

March 18, 2013

New research published in The Journal of Neuroscience suggests that modifying signals sent by astrocytes, our star-shaped brain cells, may help to limit the spread of damage after an ischemic brain stroke. The study in mice, by neuroscientists at Tufts University School of Medicine, determined that astrocytes play a critical role in the spread of damage following stroke.

The National Heart Foundation reports that ischemic strokes account for 87% of strokes in the United States. Ischemic strokes are caused by a blood clot that forms and travels to the brain, preventing the flow of blood and oxygen.

Even when blood and is restored, however, neurotransmitter processes in the brain continue to overcompensate for the , causing to be damaged. The damage to brain cells often leads to health complications including visual impairment, memory loss, clumsiness, moodiness, and partial or total paralysis.

Research and drug trials have focused primarily on therapies affecting neurons to limit . Phil Haydon's group at Tufts University School of Medicine have focused on astrocytes, a lesser known type of brain cell, as an alternative path to understanding and treating diseases affecting brain cells.

In animal models, his research team has shown that astrocytes—which outnumber neurons by ten to one—send signals to neurons that can spread the damage caused by strokes. The current study determines that decreasing astrocyte signals limits damage caused by stroke by regulating the neurotransmitter pathways after an .

The research team compared two sets of mice: a control group with normal astrocyte signaling levels and a group whose signaling was weakened enough to be made protective rather than destructive. To assess the effect of astrocyte protection after ischemic strokes, motor skills, involving tasks such as walking and picking up food, were tested. In addition, tissue samples were taken from both groups and compared.

"Mice with altered astrocyte signaling had limited damage after the stroke" said first author Dustin Hines, Ph.D., a post-doctoral fellow in the department of neuroscience at Tufts University School of Medicine. "Manipulating the astrocyte signaling demonstrates that astrocytes are critical to understanding the spread of damage following stroke."

"Looking into ways to utilize and enhance the astrocyte's protective properties in order to limit damage is a promising avenue in stroke research," said senior author Phillip Haydon, Ph.D. Haydon is the Annetta and Gustav Grisard professor and chair of the department of neuroscience at Tufts University School of Medicine and a member of the neuroscience program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

Explore further: Astrocytes control the generation of new neurons from neural stem cells

More information: Hines, D.J., Haydon, P.G. (2013). Inhibition of a SNARE-Sensitive Pathway in Astrocytes Attenuates Damage following Stroke. The Journal of Neuroscience, vol 33 issue 10, pp 4234-4240; DOI: 10.1523/JNEUROSCI.5495-12.2013

Related Stories

Astrocytes identified as target for new depression therapy

January 23, 2013

Neuroscience researchers from Tufts University have found that our star-shaped brain cells, called astrocytes, may be responsible for the rapid improvement in mood in depressed patients after acute sleep deprivation. This ...

Recommended for you

'Sixth sense' may be more than just a feeling

September 22, 2016

With the help of two young patients with a unique neurological disorder, an initial study by scientists at the National Institutes of Health suggests that a gene called PIEZO2 controls specific aspects of human touch and ...

Brain's hippocampus helps fill in the blanks of language

September 20, 2016

A new study shows that when you finish your spouse's sentences or answer a fill-in-the-blank question, you're engaging the brain's relay station for memories, an area that until now was largely neglected by scientists studying ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.