'Brain waves' challenge area-specific view of brain activity

Our understanding of brain activity has traditionally been linked to brain areas – when we speak, the speech area of the brain is active. New research by an international team of psychologists led by David Alexander and Cees van Leeuwen (KU Leuven – University of Leuven) shows that this view may be overly rigid. The entire cortex, not just the area responsible for a certain function, is activated when a given task is initiated. Furthermore, activity occurs in a pattern: waves of activity roll from one side of the brain to the other.

The brain can be studied on various scales, researcher David Alexander explains: "You have the neurons, the circuits between the neurons, the Brodmann areas – that correspond to a certain function – and the entire cortex. Traditionally, scientists looked at local activity when studying brain activity, for example, activity in the Brodmann areas. To do this, you take 's (electroencephalograms) to measure the brain's while a subject performs a task and then you try to trace that activity back to one or more brain areas."

This video is not supported by your browser at this time.
A wave of brain activity measured by the magnetic field it generates externally to the head. The left view of the head is shown on the left side of the image and the right view of the head on the right side of the image. This wave takes about 100 milliseconds to traverse the entire surface of the brain. The travelling wave originates on the lower-left of the head and travels to the lower front-right of the head. Most of the magnetic field shown in this video is generated by brain activity close to the surface of the cortex. The times displayed at the bottom are relative to the subject pressing a button at time zero. The colour scale shows the peak of the wave as hot colours and the trough of the wave as dark colours.

In this study, the explore uncharted territory: "We are examining the activity in the as a whole. The brain is a non-stop, always-active system. When we perceive something, the information does not end up in a specific part of our brain. Rather, it is added to the brain's existing activity. If we measure the electrochemical activity of the whole cortex, we find wave-like patterns. This shows that is not local but rather that activity constantly moves from one part of the brain to another. The local activity in the Brodmann areas only appears when you average over many such waves."

This video is not supported by your browser at this time.
A wave of brain activity measured by electrical signals at the surface of the brain. The electrodes have been implanted into the left hemisphere of a patient with intractable epilepsy, prior to surgical treatment. The two head views show the electrode array viewed from either the outside surface (left view) or the inside surface (right view). The wave takes about 125 milliseconds to traverse the area of cortex shown. The times displayed at the bottom are relative to the subject's voluntary finger movement at zero milliseconds. The travelling wave originates from the back of the cortex and propagates toward the frontal region. The colour scale shows the peak of the wave as hot colours and the trough of the wave as dark colours.

Each activity wave in the cerebral cortex is unique. "When someone repeats the same action, such as drumming their fingers, the motor centre in the brain is stimulated. But with each individual action, you still get a different wave across the cortex as a whole. Perhaps the person was more engaged in the action the first time than he was the second time, or perhaps he had something else on his mind or had a different intention for the action. The direction of the waves is also meaningful. It is already clear, for example, that activity waves related to orienting move differently in children – more prominently from back to front – than in adults. With further research, we hope to unravel what these different wave trajectories mean."

More information: The full text of the study "Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals" is available on the website of NeuroImage: www.sciencedirect.com/science/… ii/S1053811913000633

add to favorites email to friend print save as pdf

Related Stories

Has evolution given humans unique brain structures?

Feb 22, 2013

Humans have at least two functional networks in their cerebral cortex not found in rhesus monkeys. This means that new brain networks were likely added in the course of evolution from primate ancestor to human. These findings, ...

Brain activity revealed when watching a feature film

May 29, 2012

Human brain functions have been studied in the past using relatively simple stimuli, such as pictures of faces and isolated sounds or words. Researchers from Aalto University Department of Biomedical Engineering and Computational ...

Recommended for you

Celebrities in 'Ice Bucket Challenge' to fight disease

5 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

7 hours ago

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

8 hours ago

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments