Cell death in retina helps tune our internal clocks

March 5, 2013 by Amy Lunday

(Medical Xpress)—With every sunrise and sunset, our eyes make note of the light as it waxes and wanes, a process that is critical to aligning our circadian rhythms to match the solar day so we are alert during the day and restful at night. Watching the sun come and go sounds like a peaceful process, but Johns Hopkins scientists have discovered that behind the scenes, millions of specialized cells in our eyes are fighting for their lives to help the retina set the stage to keep our internal clocks ticking.

In a study that appeared in a recent issue of Neuron, a team led by biologist Samer Hattar has found that there is a kind of turf war going on behind our eyeballs, where intrinsically photosensitive (ipRGCs) are jockeying for the best position to receive information from rod and about light levels. By studying these specialized cells in mice, Hattar and his team found that the cells actually kill each other to seize more space and find the best position to do their job.

Understanding this fight could one day lead to victories against several conditions, including autism and some , where influence our behavior. The results could help scientists have a better idea about how the circuits behind our eyes assemble to influence our physiological functions, said Hattar, an associate professor of biology in the Krieger School of Arts and Sciences.

"In a nutshell, death in our retina plays a vital role in assembling the retinal circuits that influence crucial such as and sleep-," Hattar said. "Once we have a greater understanding of the circuit formation underlying all of our neuronal abilities, this could be applied to any ."

Hattar and his team determined that the killing among rival ipRGCs is justifiable homicide: Without this cell death, circadian blindness overcame the mice, who could no longer distinguish day from night. Hattar's team studied mice that were genetically modified to prevent cell death by removing the Bax protein, an essential factor for cell death to occur. They discovered that if cell death is prevented, ipRGCs distribution is highly affected, leading the surplus cells to bunch up and form ineffectual, ugly clumps incapable of receiving light information from rods and cones for the alignment of circadian rhythms. To detect this, the researchers used wheel running activity measurements in mice that lacked the Bax protein as well as the melanopsin protein which allows ipRGCs to respond only through rods and cones and compared it to animals where only the Bax gene was deleted.

What the authors uncovered was exciting: When death is prevented, the ability of rods and cones to signal light to our is highly impaired. This shows that cell death plays an essential role in setting the circuitry that allows the retinal rods and cones to influence our circadian rhythms and sleep.

Hattar's study was funded by the National Institute of General Medical Sciences and the National Institute of Neurological Disorders and Stroke and was carried out in close collaboration with Rejji Kuruvilla, an associate professor who is another member of the mouse tri-lab community in the Department of Biology at Johns Hopkins.

Explore further: Retinal cells thoughts to be the same are not: study

More information: www.cell.com/neuron/abstract/S0896-6273(12)01105-1

Related Stories

Retinal cells thoughts to be the same are not: study

July 25, 2011

The old adage "Looks can be deceiving" certainly rings true when it comes to people. But it is also accurate when describing special light-sensing cells in the eye, according to a Johns Hopkins University biologist.

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

Neuroscientists reveal how the brain can enhance connections

November 18, 2015

When the brain forms memories or learns a new task, it encodes the new information by tuning connections between neurons. MIT neuroscientists have discovered a novel mechanism that contributes to the strengthening of these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.