Human brain treats prosthetic devices as part of the body

People with spinal cord injuries show strong association of wheelchairs as part of their body, not extension of immobile limbs injuries show strong association of wheelchairs as part of their body, not extension of immobile limbs.

The can learn to treat relevant prosthetics as a substitute for a non-working body part, according to research published March 6 in the open access journal by Mariella Pazzaglia and colleagues from Sapienza University and IRCCS Fondazione Santa Lucia of Rome in Italy, supported by the International Foundation for Research in Paraplegie.

The researchers found that wheelchair-bound with perceived their body's edges as being plastic and flexible to include the wheelchair, independent of time since their injury or experience with using a wheelchair. Patients with lower spinal cord injuries who retained upper body movement showed a stronger association of the wheelchair with their body than those who had spinal cord impairments in the entire body.

According to the authors, this suggests that rather than being thought of only as an extension of the immobile limbs, the wheelchairs had become tangible, functional substitutes for the affected body part. As Pazzaglia explains, "The corporeal awareness of the tool emerges not merely as an extension of the body but as a substitute for, and part of, the functional self."

Previous studies have shown that people with that extend or restore movement may make such tools part of their physical identity, but whether this integration was due to prolonged use or a result of altered was unclear. Based on the results of this study, the authors suggest that it may be the latter, as the brain appears to continuously update bodily signals to incorporate these tools into a sense of the body. The study concludes that this ability may have applications in rehabilitation of physically impaired people.

More information: Pazzaglia M, Galli G, Scivoletto G, Molinari M (2013) A Functionally Relevant Tool for the Body following Spinal Cord Injury. PLOS ONE 8(3): e58312.doi:10.1371/journal.pone.0058312

Related Stories

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Recommended for you

Student seeks to improve pneumonia vaccines

20 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

22 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments