Study finds immunity protein that ramps up inflammation, and agents that can block it

Scientists at the University of Pittsburgh School of Medicine have discovered a new biological pathway of innate immunity that ramps up inflammation and then identified agents that can block it, leading to increased survival and improved lung function in animal models of pneumonia. They reported their findings today in Nature Immunology.

Pneumonia and other infections sometimes provoke an inflammatory response from the body that is more detrimental than the disease-causing bacteria, said senior author Rama Mallampalli, M.D, professor and vice chair for research, Department of Medicine, and director of the Acute Lung Injury Center of Excellence at Pitt.

"In our ongoing studies of pneumonia, we found infecting bacteria activate a previously unknown protein called Fbxo3 to form a complex that degrades another protein called Fbxl2, which is needed to suppress the inflammatory response," said Dr. Mallampalli, who is also chief of the pulmonary division of the VA Pittsburgh Healthcare System. "The result is an exaggerated inflammatory response that can lead to further damage of the lung tissue, multi- and shock."

The research team, led by Bill B. Chen, Ph.D., associate professor, Division of Pulmonary, Allergy and Critical Care Medicine, conducted experiments in which mice that lacked the ability to make Fbxo3 were infected with a strain of Pseudomonas bacteria, and found that they had better lung mechanics and longer survival than mice that still made the protein.

Research team members Bryan J. McVerry, M.D., and Yingze Zhang, Ph.D., both of the Acute Lung Injury Center of Excellence, found that blood samples from 16 people who had sepsis, a condition of systemic inflammation, revealed higher levels of Fbxo3 and other and lower levels of Fbxl2 than samples from seven patients who did not have sepsis or .

Based on the structure of Fbxo3, the researchers developed a family of small molecules with the aim of inhibiting its activity. Administration of one of them, called BC-1215, led to reduced inflammatory markers and improved lung mechanics in mouse models of pneumonia and sepsis.

"The key is to find ways to help the body temper its inflammatory response so that it's able to kill the infectious agent without causing injury to healthy tissue," Dr. Mallampalli said.

"The F-box protein Fbxo3, and other related proteins, represent ideal targets for treatment of , because it controls the innate immune response, is upstream of important inflammatory signaling pathways, and is more selective than traditional drugs that regulate protein turnover," noted Mark T. Gladwin, M.D., chief of the Division of Pulmonary, Allergy and , Pitt School of Medicine.

The team is beginning to study the effects of BC-125 on other conditions of , such as colitis and arthritis.

More information: Paper: dx.doi.org/10.1038/ni.2565

Related Stories

Key to out-of-control immune response in lung injury found

Aug 16, 2007

Researchers at the University of Illinois at Chicago College of Medicine have discovered how a protein modulates the inflammatory response in sudden, life-threatening lung failure. The protein's previously unknown role is ...

Recommended for you

Commensal bacteria help orchestrate immune response in lung

Sep 11, 2014

Studies in mice demonstrate that signals from the bacteria that harmlessly—and often beneficially—inhabit the human gastrointestinal tract boost the immune system's ability to kill a major respiratory pathogen, Klebsiella pn ...

How age alters our immune response to bereavement

Sep 09, 2014

Young people have a more robust immune response to the loss of a loved one, according to new research from the University of Birmingham, providing insight into how different generations cope with loss.

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

rfw
not rated yet Mar 31, 2013
Might this kind of mechanism be a way to describe the often-alleged effectiveness of homeopathy?