Neuron loss in schizophrenia and depression could be prevented

March 13, 2013

Gamma-aminobutyric acid (GABA) deficits have been implicated in schizophrenia and depression. In schizophrenia, deficits have been particularly well-described for a subtype of GABA neuron, the parvalbumin fast-spiking interneurons. The activity of these neurons is critical for proper cognitive and emotional functioning.

It now appears that parvalbumin are particularly vulnerable to oxidative stress, a factor that may emerge commonly in development, particularly in the context of like schizophrenia or bipolar disorder, where compromised mitochondrial function plays a role. parvalbumin neurons may be protected from this effect by N-acetylcysteine, also known as Mucomyst, a medication commonly prescribed to protect the liver against the of acetaminophen (Tylenol) overdose, reports a new study in the current issue of Biological Psychiatry.

Dr. Kim Do and collaborators, from the Center for Psychiatric Neurosciences of Lausanne University in Switzerland, have worked many years on the hypothesis that one of the causes of schizophrenia is related to vulnerability genes/factors leading to oxidative stress. These oxidative stresses can be due to infections, inflammations, traumas or psychosocial stress occurring during typical , meaning that at-risk subjects are particularly exposed during childhood and adolescence, but not once they reach adulthood.

Their study was performed with mice deficient in glutathione, a molecule essential for cellular protection against oxidations, leaving their neurons more exposed to the of oxidative stress. Under those conditions, they found that the parvalbumin neurons were impaired in the brains of mice that were stressed when they were young. These impairments persisted through their life. Interestingly, the same stresses applied to adults had no effect on their parvalbumin neurons.

Most strikingly, mice treated with the antioxidant N-acetylcysteine, from before birth and onwards, were fully protected against these negative consequences on parvalbumin neurons.

"These data highlight the need to develop novel therapeutic approaches based on antioxidant compounds such as N-acetylcysteine, which could be used preventively in young at-risk subjects," said Do. "To give an antioxidant from childhood on to carriers of a genetic vulnerability for schizophrenia could reduce the risk of emergence of the disease."

"This study raises the possibility that GABA neuronal deficits in psychiatric disorder may be preventable using a drug, N-acetylcysteine, which is quite safe to administer to humans," added Dr. John Krystal, Editor of .

Explore further: Sociability may depend upon brain cells generated in adolescence

More information: The article is "Early-Life Insults Impair Parvalbumin Interneurons via Oxidative Stress: Reversal by N-Acetylcysteine" by Jan-Harry Cabungcal, Pascal Steullet, Rudolf Kraftsik, Michel Cuenod, and Kim Q. Do (doi: 10.1016/j.biopsych.2012.09.020). The article appears in Biological Psychiatry, Volume 73, Issue 6 (March 15, 2013)

Related Stories

GABA deficits disturb endocannabinoid system

January 24, 2012

Changes in the endocannabinoid system may have important implications for psychiatric and addiction disorders. This brain system is responsible for making substances that have effects on brain function which resemble those ...

Recommended for you

Motivation to bully is regulated by brain reward circuits

June 29, 2016

Individual differences in the motivation to engage in or to avoid aggressive social interaction (bullying) are mediated by the basal forebrain, lateral habenula circuit in the brain, according to a study conducted at the ...

New clues about the aging brain's memory functions

June 29, 2016

A European study led by Umeå University Professor Lars Nyberg, has shown that the dopamine D2 receptor is linked to the long-term episodic memory, which function often reduces with age and due to dementia. This new insight ...

New technology could deliver drugs to brain injuries

June 28, 2016

A new study led by scientists at the Sanford Burnham Prebys Medical Discovery Institute (SBP) describes a technology that could lead to new therapeutics for traumatic brain injuries. The discovery, published today in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.