Protein synthesis blocker may hold key to reducing effects of traumatic events

March 4, 2013

Reducing fear and stress following a traumatic event could be as simple as providing a protein synthesis blocker to the brain, report a team of researchers from McLean Hospital, Harvard Medical School, McGill University, and Massachusetts General Hospital in a paper published in the March 4 issue of Proceedings of the National Academy of Sciences.

"This is an important basic neuroscience finding that has the potential to have for the way individuals with posttraumatic stress disorder are treated," said Vadim Bolshakov, PhD, director of the Cellular Neurobiology Laboratory at McLean Hospital. "We used a well known behavioral paradigm that we think models PTSD, conditioning, to explore how fearful memories are formed. In our study, the level of fear exhibited by experimental subjects was significantly reduced as a result of decreased signal transfer between cells in the amygdala, a key brain region in fear-related behaviors."

Influenced by the original findings of Karim Nader, PhD, professor of Psychology at McGill University, whose pioneering work showed that old memories should be un-stored in their brain after their recollection in order to last, Bolshakov's team exposed rats to auditory stimulus that the animals learned to associate with a mildly traumatic event. After a single exposure to the training procedures, the rats exhibited fear during subsequent exposures to . The researchers then provided the animals with rapamycin, a blocker, immediately after memory was retrieved in order to control bonding between the cells in the brain. The animals exhibited significantly less fear in response to the fear-invoking stimulus when retested the next day.

"The animals showed stereotypical signs of fear after the initial exposure to the auditory stimulus," explained Nader, a co-author on the paper. "Following the administration of rapamycin, we show a significant decrease in fear, but not a complete elimination. We were surprised to note that activity between cells was significantly affected by postsynaptic mechanisms."

The findings of this study, which was funded by a grant from the United States Department of Defense spearheaded by Roger Pitman, suggest that different plasticity rules within cells in the brain are recruited during the formation of the original fear memory and after fear memory was reactivated.

"Although further work at the molecular level needs to be completed, we are hopeful that this unexpected discovery is the foundation needed to identify ways in which we can better treat anxiety disorders in which fear condition plays a role, such as post traumatic stress disorder," said Bolshakov.

Explore further: Regulating the formation of fear extinction memory

Related Stories

Fighting phobias involves creation of 'competing' memories

October 22, 2012

Most people have a fear of something but for 1 in 10 people, fear can turn into a phobia. The most common phobias being a fear of spiders, snakes, heights, the dark, being in crowds or tight spaces, animals and people. Then ...

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.