Relieving chronic pain

A new, implantable device for treating chronic pain passes an important safety test.

Each year, more than 35,000 patients in the United States are implanted with stimulators to treat chronic pain. Unfortunately, up to half of such patients receive only very limited pain relief. To help more patients, scientists are developing a new device to deliver therapeutic stimulation in a more targeted way, reaching deep within the spinal cord.

Standard devices, first introduced in 1967, work by delivering a low electrical current to the spinal cord that interferes with the body's pain signals. Such devices, however, are only able to deliver therapeutic current to a thin layer of nerve fibers along the outside of the spinal cord. That's because the electrodes delivering the current are placed within the , which is itself conductive and so dissipates some of the current.

The new device, called the Human Spinal Cord Modulation System (HSCMS), is designed to be in direct contact with the spinal cord, held in place by a small loop of wire. Because the spinal cord moves during normal patient activity, that loop has to exert enough pressure for the HSCMS to stay in contact with the spinal cord but not so much that the pressure restricts blood flow or causes direct injury.

To test the pressure exerted by the HSCMS's design, researchers attached the device to a silicone model of the spinal cord previously developed to have the same biomechanical characteristics as living tissue. They then slowly compressed the loop, measuring the pressure exerted on the silicone model. The results, which were accepted for publication in the (AIP) Journal of Applied Physics, show the device's loop design exerts pressure at a similar level as is normally found on the spinal cords of healthy people, and so passes an important safety test for further development of the device.

More information: "Dynamic loading characteristics of an intradural spinal cord stimulator" is published in the Journal of Applied Physics. jap.aip.org/resource/1/japiau/v113/i2/p026103_s1

Related Stories

Spinal cord treatment offers hope

Nov 18, 2011

Queensland University of Technology (QUT) researchers have developed a promising new treatment for spinal cord injury in animals, which could eventually prevent paralysis in thousands of people worldwide every ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments