A coordinated response to cardiac stress

March 1, 2013

Myocardial hypertrophy, a thickening of the heart muscle, is an adaptation that occurs with increased stress on the heart, such as high blood pressure. As the heart muscle expands, it also requires greater blood flow to maintain access to oxygen and nutrients, necessitating an expansion of the cardiac vasculature.

In this issue of the , Daniela Tirziu and researchers at Yale University identified a molecular mechanism by which the growth of new blood vessels (angiogenesis) and growth are coordinated.

Using a mouse model of myocardial hypertrophy, Tirziu and colleagues determined that nitric oxide triggers the destruction of a protein known as RGS4.

Nitric oxide typically drives physiological changes associated with the relaxation of blood vessels, while RGS4 attenuates the activity of a cellular signaling pathway that promotes cardiac growth.

These findings reveal how increases in heart muscle and are coordinated, linking changes in vasculature to changes in heart size.

Explore further: Hormone reduces risk of heart failure from chemotherapy

More information: NO triggers RGS4 degradation to coordinate angiogenesis and cardiomyocyte growth, doi:10.1172/JCI65112

Related Stories

Hormone reduces risk of heart failure from chemotherapy

August 4, 2011

Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

Recommended for you

Smoking leaves lasting marks on DNA, study finds

September 20, 2016

(HealthDay)—Smoking cigarettes can leave a lasting imprint on human DNA, altering more than 7,000 genes in ways that may contribute to the development of smoking-related diseases, a new study says.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.