Research reveals protective properties of influenza vaccines

(Medical Xpress)—Collaborating scientists from Nationwide Children's Hospital, Baylor Institute for Immunology Research, and Mount Sinai School of Medicine have identified an important mechanism for stimulating protective immune responses following seasonal influenza vaccinations. The study was published in Science Translational Medicine, a journal of the American Association for the Advancement of Science (AAAS).

While vaccines protect 60 to 90 percent of healthy adults from "the flu," the mechanisms providing that protection are still not well understood.

The study led by Octavio Ramilo, MD, chief of Infectious Diseases and an investigator in the Center for Vaccines and Immunity at Nationwide Children's Hospital and professor of Pediatrics at The Ohio State University (OSU) College of Medicine, and Hideki Ueno, MD, PhD, an investigator at the Baylor Institute for Immunology Research at Baylor University, demonstrates how certain in the blood are stimulated to provide protective antibody responses with seasonal flu vaccines.

Antibodies are produced by specific or , which serve as an immune defense against foreign bodies such as the . Helper T , another type of white cell, are essential for the generation of B cells.

Blood samples before and after influenza vaccination from three groups of healthy study participants were analyzed for antibody responses. The groups included two sets of adults, one receiving flu vaccines during the 2009-2010 winter and the other receiving vaccination during the 2011-2012 winter. The third group included children receiving the during the 2010-2011 winter.

Analyses show that a temporary increase in a unique subset of helper T cells expressing the co-stimulator molecule ICOS adds to the immune response by helping B cells produce influenza-specific antibodies.

Results indicated that at day seven following the administration of a flu vaccine in all groups, stimulated T cells were evident, contributing to the development of the immune response.

The T cells positively correlated with increased antibodies against each flu virus strain examined, with the exception in the children's group against the swine-origin H1N1 virus.

"Given that seasonal influenza vaccines induce mainly through boosting the recall response of the immune system, this lack of correlation might reflect the lack of H1N1 specific immunity in some children," explains study co-author Emilio Flano, PhD, a principal investigator in the Center for Vaccines and Immunity at Nationwide Children's and an associate professor of Pediatrics at OSU College of Medicine.

"This is consistent with the fact that these children had not been vaccinated or naturally exposed to the H1N1 virus prior to being vaccinated during the 2010-2011 winter," said study co-author Santiago Lopez, MD, a postdoctoral research fellow in the Center for Vaccines and Immunity and a resident at Nationwide Children's.

Further experiments demonstrated that this unique subset of helper T cells can boost production of existing antibodies that fight flu by stimulating memory B cells, but do not help production of new antibodies by naïve B cells.

"We're gratified that our study provides evidence of one of the essential events associated with the immune response following seasonal ," says Dr. Ramilo. "Understanding these processes is a key step toward developing more effective vaccines."

Related Stories

Recommended for you

Thyroid disease risk varies among blacks, Asians, and whites

14 hours ago

An analysis that included active military personnel finds that the rate of the thyroid disorder Graves disease is more common among blacks and Asian/Pacific Islanders compared with whites, according to a study in the April ...

The key to easy asthma diagnosis is in the blood

17 hours ago

Using just a single drop of blood, a team of University of Wisconsin-Madison researchers has developed a faster, cheaper and more accurate tool for diagnosing even mild cases of asthma.

Younger adults hit hardest this flu season

19 hours ago

(HealthDay)—The H1N1 flu was the predominant influenza strain in the United States this year, but it packed a lot less punch than in 2009 when it caused a worldwide pandemic, health officials report.

User comments