Protecting against aging at the molecular level

April 8, 2013

Research from Western University and Lawson Health Research Institute sheds new light on a gene called ATRX and its function in the brain and pituitary. Children born with ATRX syndrome have cognitive defects and developmental abnormalities. ATRX mutations have also been linked to brain tumors. Dr. Nathalie Bérubé, PhD, and her colleagues found mice developed without the ATRX gene had problems in in the forebrain, the part of the brain associated with learning and memory, and in the anterior pituitary which has a direct effect on body growth and metabolism. The mice, unexpectedly, also displayed shortened lifespan, cataracts, heart enlargement, reduced bone density, hypoglycemia; in short, many of the symptoms associated with aging. The research is published in the Journal of Clinical Investigation.

Ashley Watson, a PhD candidate working in the Bérubé lab and the first author on the paper, discovered the loss of ATRX caused DNA damage especially at the ends of chromosomes which are called telomeres. She investigated further and discovered the damage is due to problems during DNA replication, which is required before the onset of cell division. Basically, the ATRX protein was needed to help replicate the telomere.

The video will load shortly
Research from Nathalie Bérubé, Ph.D., Western's Schulich School of Medicine & Dentistry and Lawson Health Research Institute, found that the loss of the gene ATRX increases DNA damage locally in the forebrain and anterior pituitary, resulting in systemic defects similar to those seen in premature aging. Credit: Western University

Working with Frank Beier of the Department of Physiology and Pharmacology at Western's Schulich School of Medicine & Dentistry, the researchers made another discovery. "Mice that developed without ATRX were small at birth and failed to thrive, and when we looked at the skeleton of these mice, we found very low bone mineralization. This is another feature found in mouse models of premature aging," says Bérubé, an associate professor in the Departments of Biochemistry and Paediatrics at Schulich Medicine & Dentistry, and a scientist in the Molecular Genetics Program at the Children's Health Research Institute within Lawson. "We found the loss of ATRX increases DNA damage locally in the forebrain and anterior pituitary, resulting in systemic defects similar to those seen in aging."

The researchers say the lack of ATRX in the anterior pituitary caused problems with the thyroid, resulting in low levels of a hormone called insulin-like growth factor-one (IGF-1) in the blood. There are theories that low IGF-1 can deplete stores of stem cells in the body, and Bérubé says that's one of the explanations for the premature aging. This research was funded by the Canadian Institutes of Health Research.

Explore further: ATRX -- Too much or too little underlies sex abnormalities

More information: Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced lifespan, J Clin Invest. doi:10.1172/JCI65634

Related Stories

ATRX -- Too much or too little underlies sex abnormalities

July 26, 2007

6% of the patient population in Melbourne carries a genetic abnormality implicated in thalassemia. As well as causing blood disorders and severe mental retardation, boys with ATRX mutations have genital abnormalities.

A common thread links multiple human cognitive disorders

February 15, 2010

A new study reveals that a common underlying mechanism is shared by a group of previously unrelated disorders which all cause complex defects in brain development and function. Rett syndrome (RTT), Cornelia de Lange syndrome ...

Scientists crack genetic code for form of pancreatic cancer

January 21, 2011

Scientists at Johns Hopkins have deciphered the genetic code for a type of pancreatic cancer, called neuroendocrine or islet cell tumors. The work, described online in the Jan. 20 issue of Science Express, shows that patients ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.