Growing new arteries, bypassing blocked ones

Scientific collaborators from Yale School of Medicine and University College London (UCL) have uncovered the molecular pathway by which new arteries may form after heart attacks, strokes and other acute illnesses bypassing arteries that are blocked. Their study appears in the April 29 issue of Developmental Cell.

Arteries form in utero and during development, but can also form in adults when organs become deprived of oxygen—for example, after a heart attack. The organs release a molecular signal called VEGF. Working with mice, the Yale-UCL team discovered that in order for VEGF-driven artery formation to occur, VEGF must bind with two molecules known as VEGFR2 and NRP1, and all three must work as a team.

The researchers examined mice that were lacking a particular part of the NRP1 molecule that transports VEGF and VEGFR2 to a signaling center inside . They observed that the of these mice contained poorly constructed arterial branches. Further, the mice where unable to efficiently repair blood vessel blockage through the formation of new arteries.

"We have identified an important new mechanism that regulates VEGFR2 transport in ," said corresponding author Michael Simons, professor of medicine and cell biology, and director of the cardiovascular research center at Yale School of Medicine. "This opens new therapeutic opportunities for developing drugs that would either stimulate or inhibit —important goals in cardiovascular and anti-cancer therapies, respectively." Simons also has an appointment as honorary professor of medicine at UCL.

The Yale-UCL collaboration began more than three years ago, as an intensive global effort to improve the human condition through biomedical research and translational medicine. The Yale-UCL alliance has provided many opportunities to date for high-level scientific research, and clinical and educational collaboration.

Related Stories

Recommended for you

Organ transplant rejection may not be permanent

date 36 minutes ago

Rejection of transplanted organs in hosts that were previously tolerant may not be permanent, report scientists from the University of Chicago. Using a mouse model of cardiac transplantation, they found that immune tolerance ...

Researchers find key mechanism that causes neuropathic pain

date 2 hours ago

Scientists at the University of California, Davis, have identified a key mechanism in neuropathic pain. The discovery could eventually benefit millions of patients with chronic pain from trauma, diabetes, shingles, multiple ...

Deep sea light shines on drug delivery potential

date 3 hours ago

A naturally occurring bioluminescent protein found in deep sea shrimp—which helps the crustacean spit a glowing cloud at predators—has been touted as a game-changer in terms of monitoring the way drugs ...

Researchers learn to measure aging process in young adults

date 20 hours ago

Looking around at a 20th high school reunion, you might notice something puzzling about your classmates. Although they were all born within months of each other, these 38-year-olds appear to be aging at different ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.