How the brain folds to fit

April 26, 2013
How the brain folds to fit

During fetal development of the mammalian brain, the cerebral cortex undergoes a marked expansion in surface area in some species, which is accommodated by folding of the tissue in species with most expanded neuron numbers and surface area. Researchers have now identified a key regulator of this crucial process.

Different regions of the are devoted to the performance of specific tasks. This in turn imposes particular demands on their development and structural organization. In the vertebrate , for instance, the – which is responsible for cognitive functions – is remarkably expanded and extensively folded exclusively in . The greater the degree of folding and the more furrows present, the larger is the surface area available for reception and processing of neural information. In humans, the exterior of the developing brain remains smooth until about the sixth month of gestation. Only then do superficial folds begin to appear and ultimately dominate the entire brain in humans. Conversely mice, for example, have a much smaller and smooth cerebral cortex.

"The mechanisms that control the expansion and folding of the brain during fetal development have so far been mysterious," says Professor Magdalena Götz, a professor at the Institute of Physiology at LMU and Director of the Institute for at the Helmholtz Center Munich. Götz and her team have now pinpointed a major player involved in the molecular process that drives cortical expansion in the mouse. They were able to show that a novel nuclear protein called Trnp1 triggers the enormous increase in the numbers of which forces the cortex to undergo a complex series of folds. Indeed, although the normal has a smooth appearance, dynamic regulation of Trnp1 results in activating all necessary processes for the formation of a much enlarged and folded cerebral cortex. Levels of Trnp1 control expansion and folding "Trnp1 is critical for the expansion and folding of the cerebral cortex, and its expression level is dynamically controlled during development," says Götz. In the early embryo, Trnp1 is locally expressed in high concentrations. This promotes the proliferation of self-renewing multipotent neural stem cells and supports tangential expansion of the cerebral cortex. The subsequent fall in levels of Trnp1 is associated with an increase in the numbers of various intermediate progenitors and basal radial glial cells. This results in the ordered formation and migration of a much enlarged number of neurons forming folds in the growing cortex.

The findings are particularly striking because they imply that the same molecule – Trnp1 – controls both the expansion and the folding of the cerebral cortex and is even sufficient to induce folding in a normally smooth cerebral cortex. Trnp1 therefore serves as an ideal starting point from which to dissect the complex network of cellular and molecular interactions that underpin the whole process. Götz and her colleagues are now embarking on the next step in this exciting journey - determination of the molecular function of this novel Trnp1 and how it is regulated.

Explore further: Tiny variation in one gene may have led to crucial changes in human brain

More information: Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate, Ronny Stahl, Tessa Walcher, Camino De Juan Romero, Gregor Alexander Pilz, Silvia Cappello, Martin Irmler, José Miguel Sanz Anquela, Johannes Beckers, Robert Blum, Víctor Borrell, and Magdalena Götz, Cell 2013, doi: 10.1016/j.cell.2013.03.027

Related Stories

Cortex development depends on a protein

October 2, 2012

As outlined in a study published in Developmental Cell, researchers have discovered a novel function for p27 in the control of interneuron migration in the developing cerebral cortex.

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.