Clarifying the effect of stem cell therapy on cancer

Injection of human stem cells into mice with tumors slowed down tumor growth, finds research published in BioMed Central's open access journal Stem Cell Research & Therapy. Human mesenchymal stem cells (MSC), isolated from bone marrow, caused changes in blood vessels supplying the tumor, and it is this modification of blood supply which seems to impact tumor growth.

The use of in treating cancer has been controversial, with some studies finding that stem cells force tumors to enter programmed cell death. However other studies find that stem cells actually promote growth by inducing infiltration of new blood vessels. In attempting to sort out this puzzle researchers from INSERM groups at Université Joseph Fourier in collaboration with CHU de Grenoble investigated the impact of MSC on already established subcutaneous or lung metastasis in mice.

For both the subcutaneous and lung tumors, injection of MSC reduced cell division, consequently slowing the rate of tumor growth. Part of the mode of action of stem cells therefore appears to be due to with angiogenesis, but the mechanism behind this is still unclear.

Claire Rome who led this study explained, "We found that MSC altered vasculature inside the tumor - although new blood vessels were generated, overall they were longer and fewer than in untreated tumors. This could be restricting the oxygen and nutrients to the tumor, limiting cell division." She continued, "Our study confirms others which propose that stem cells, in particular MSC, might be one way forwards in treating cancer."

Commenting on this study Celia Gomes, from the University of Coimbra, said, "One of the interesting questions this study raises is when MSC promote and when they restrict it. The answer seems to be timing – this study looks at already established tumors, while others, which find that MSC increase growth, tend to be investigating new tumors. This is a first step in the path to identifying exactly which patients might benefit from stem cell therapy and who will not."

More information: The dual effect of MSCs on tumour growth and tumour angiogenesis, Michelle Kéramidas, Florence de Fraipont, Anastassia Karageorgis, Anaïck Moisan, Virginie Persoons, Marie-Jeanne Richard, Jean-Luc Coll and Claire Rome, Stem Cell Research & Therapy 2013, 4:41

Commentary: The dual role of mesenchymal stem cells in tumor progression, Célia MF Gomes, Stem Cell Research & Therapy 2013, 4:42

Related Stories

Precancerous stem cells can form tumor blood vessels

date Feb 20, 2008

Tumors require a blood supply to grow, but how they acquire their network of blood vessels is poorly understood. A new study here shows that tumor blood vessels can develop from precancerous stem cells, a recently discovered ...

Cell senescence does not stop tumor growth

date Jan 19, 2012

Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Recommended for you

Spicy treatment the answer to aggressive cancer?

date 3 hours ago

It has been treasured by food lovers for thousands of years for its rich golden colour, peppery flavour and mustardy aroma…and now turmeric may also have a role in fighting cancer.

Cancer survivors who smoke perceive less risk from tobacco

date 20 hours ago

Cancer survivors who smoke report fewer negative opinions about smoking, have more barriers to quitting, and are around other smokers more often than survivors who had quit before or after their diagnosis, according to a ...

Melanoma mutation rewires cell metabolism

date 20 hours ago

A mutation found in most melanomas rewires cancer cells' metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.