New genetic screen paves the way for long-sought treatments for liver disease

April 11, 2013

Chronic liver failure is a major health problem that causes about one million deaths around the world each year. A study published April 11th by Cell Press in the journal Cell reveals a new type of screen for identifying genes that promote liver repair in mouse models of both acute and chronic liver disease. The study shows that the MKK4 gene could be a promising therapeutic target to enhance liver regeneration and provides a blueprint for future studies aimed at discovering new therapies for liver disease.

"It is now conceivable to develop specific pharmacological inhibitors of MKK4 in order to treat patients with liver disease," says senior study author Lars Zender of University Hospital Tuebingen. "Such treatment strategies are urgently needed in the clinic, as currently the only curative treatment option for patients with end-stage liver disease is , and the number of donors is limited."

is caused by infections with hepatitis B or C virus, as well as alcohol abuse and malnutrition. Typically, the liver can repair itself after injury by increasing the production of cells called hepatocytes, but serious disease can interfere with this process and ultimately result in liver failure.

To identify potential targets for treating liver disease, Zender and his team developed an unbiased screen to search for genes that regulate in animal disease models. After interfering with the expression of hundreds of genes in mouse livers, they found that MKK4 inhibition increased the production and survival of hepatocytes after acute and chronic , resulting in healthier livers and an increase in the long-term survival of mice. Moreover, MKK4 inhibition increased the survival and long-term viability of hepatocytes in culture, offering a much-needed strategy for improving cell transplantation in patients with liver disease.

"Based on previous studies, we would not have guessed that MKK4 would strongly influence liver regeneration," Zender says. "Our study shows that genetic screens are a powerful way to search for genes, without any preconceived notions, to identify therapeutic targets that can be used to enhance the regenerative capacity of tissues."

Explore further: Researchers identify critical receptor in liver regeneration

More information: Wuestefeld et al.: "A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration." Cell, 2013. dx.doi.org/10.1016/j.cell.2013.03.026

Related Stories

Researchers identify critical receptor in liver regeneration

March 29, 2007

In studies in mouse models, researchers at the University of California, San Diego (UCSD) School of Medicine have found that a cellular receptor involved in triggering cell death is also a necessary component of tissue repair ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.