Researchers devise method for enhancing CEST MRI

Researchers at New York University and NYU Langone Medical Center have created a novel way to enhance MRI by reducing interference from large macromolecules that can often obscure images generated by current chemical exchange saturation transfer (CEST) methods.

Their work, which appears in the journal Scientific Reports, has the potential to improve MRI for cartilage as well as for .

"We have found a way to eliminate signals of certain molecules and thereby clean up the image of parts of the body that could be used by medical professionals in order to make diagnoses," explained Alexej Jerschow, a professor in NYU's Department of Chemistry.

The study's other authors were: Ravinder Regatte, professor, Departments of Radiology and , NYU Langone Medical Center; Prodromos Parasoglou, a post-doctoral research fellow, and Ding Xia, an assistant research scientist, at the Center for , Department of Radiology at NYU Langone Medical Center; and Jae-Seung Lee, an NIH research fellow, who holds appointments in NYU's Department of Chemistry and NYU Langone Medical Center.

The researchers' work aims to improve a decade-old method, chemical exchange, which has been used to enhance MRI techniques. Under this approach, scientists exploit the movement of atoms from their natural molecular structure to water in the body in order to enhance their visibility.

However, these efforts have often been hindered by the presence of , which continue to obscure the smaller molecules that are of interest to doctors and other health-care professionals in making assessments. The macromolecules' interference is the result of two phenomena: their size and their frequencies.

Neutralizing the macro-molecular frequency interference was the focus of the NYU method reported in Scientific Reports recently.

Previously, Jerschow, Regatte, and colleagues created a non-invasive imaging technique for glycosaminogycans (GAGs), which are molecules that serve as the building blocks of cartilage and are involved in numerous vital functions in the human body. Here, under chemical exchange, they separated out the GAG protons from those of water, creating an inherent contrast agent. Testing the idea in tissue samples, the researchers found that the available GAG protons provided an effective type of contrast enhancement, allowing them to readily monitor GAGs through a clinical MRI scanner.

In the Scientific Reports work, the researchers again focused on improving visibility of GAGs through MRI. But, in this effort, they sought to block the signaling impact of the macromolecules that obscure the observation of GAGs.

To do so, they took advantage of macromolecules' broad frequency spectrum—a trait that allows for easy detection and neutralization. Specifically, the researchers could, in effect, "bleach" the signal out by simultaneously using multiple irradiation frequencies. As a result, macromolecular interference diminished and enhanced the quantitative assessment of GAGs.

"This method gives us the opportunity to correct existing CEST methods by focusing on molecular signals of interest with much better precision than currently exists," explains Regatte.

add to favorites email to friend print save as pdf

Related Stories

New test to diagnose osteoarthritis early

Aug 20, 2008

A newly developed medical imaging technology may provide doctors with a long-awaited test for early diagnosis of osteoarthritis (OA), scientists from New York reported today at the 236th National Meeting of the American Chemical ...

MRI techniques can detect early osteoarthritis

Aug 15, 2011

Researchers from NYU Langone Medical Center's Departments of Orthopaedic Surgery and Radiology found that advanced MRI techniques can be used to detect subtle changes in joint cartilage microstructure – and provide physicians ...

Recommended for you

Owls and lizards lend their ears for human hearing research

3 hours ago

Lizards and owls are some of the animal species that can help us to better understand hearing loss in humans, according to new research out of York University's Department of Physics & Astronomy in the Faculty of Science.

Team finds key to tuberculosis resistance

8 hours ago

The cascade of events leading to bacterial infection and the immune response is mostly understood. However, the molecular mechanisms underlying the immune response to the bacteria that causes tuberculosis ...

Mutation may cause early loss of sperm supply

9 hours ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

11 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.