New methods to explore astrocyte effects on brain function

April 29, 2013
This image shows cytosolic GCaMP3 expressed in astrocytes in the hippocampus of adult mice. A JGP study presents new methods to evaluate how astrocytes contribute to brain function and paves the way for future exploration of these important brain cells. Credit: Shigetomi, E., et al. 2013. J. Gen. Physiol. doi:10.1085/jgp.201210949

A study in The Journal of General Physiology presents new methods to evaluate how astrocytes contribute to brain function, paving the way for future exploration of these important brain cells at unprecedented levels of detail.

Astrocytes—the most abundant cell type in the human brain—play crucial roles in brain physiology, which may include modulating synaptic activity and regulating local blood flow. Existing research tools can be used to monitor calcium signals associated with interactions between astrocytes and neurons or blood vessels. Until now, however, astrocytic calcium signals have been investigated mainly in their somata (cell bodies) and large processes, rather than in distal fine processes close to or the endfeet that surround blood vessels. Previous studies have also mainly investigated immature specimens rather than mature .

Now, a team of California researchers provides detailed methods to visualize calcium signals throughout entire astrocytes in hippocampal slices from . The team observed numerous spontaneous localized calcium signals throughout the entire astrocyte, including the branchlets and endfeet. Their results indicated that calcium signals in endfeet were independent of those in somata and occurred more frequently. In addition to the specific findings, their methods can be used in future studies to advance our understanding of the physiology of astrocytes and their interactions with neurons and the microvasculature of the brain.

Explore further: Astrocytes control the generation of new neurons from neural stem cells

More information: Shigetomi, E., et al. 2013. J. Gen. Physiol. doi:10.1085/jgp.201210949. Adler, E. 2013. J. Gen. Physiol. doi:10.1085/jgp.201311002

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.