New methods to explore astrocyte effects on brain function

This image shows cytosolic GCaMP3 expressed in astrocytes in the hippocampus of adult mice. A JGP study presents new methods to evaluate how astrocytes contribute to brain function and paves the way for future exploration of these important brain cells. Credit: Shigetomi, E., et al. 2013. J. Gen. Physiol. doi:10.1085/jgp.201210949

A study in The Journal of General Physiology presents new methods to evaluate how astrocytes contribute to brain function, paving the way for future exploration of these important brain cells at unprecedented levels of detail.

Astrocytes—the most abundant cell type in the human brain—play crucial roles in brain physiology, which may include modulating synaptic activity and regulating local blood flow. Existing research tools can be used to monitor calcium signals associated with interactions between astrocytes and neurons or blood vessels. Until now, however, astrocytic calcium signals have been investigated mainly in their somata (cell bodies) and large processes, rather than in distal fine processes close to or the endfeet that surround blood vessels. Previous studies have also mainly investigated immature specimens rather than mature .

Now, a team of California researchers provides detailed methods to visualize calcium signals throughout entire astrocytes in hippocampal slices from . The team observed numerous spontaneous localized calcium signals throughout the entire astrocyte, including the branchlets and endfeet. Their results indicated that calcium signals in endfeet were independent of those in somata and occurred more frequently. In addition to the specific findings, their methods can be used in future studies to advance our understanding of the physiology of astrocytes and their interactions with neurons and the microvasculature of the brain.

More information: Shigetomi, E., et al. 2013. J. Gen. Physiol. doi:10.1085/jgp.201210949. Adler, E. 2013. J. Gen. Physiol. doi:10.1085/jgp.201311002

add to favorites email to friend print save as pdf

Related Stories

Astrocytes affect brain's information signaling

Jun 14, 2010

Astrocytes are the most common type of cell in the brain and play an important role in the function of neurons - nerve cells. New research from the University of Gothenburg, Sweden, shows that they are also directly involved ...

Recommended for you

Newly discovered hormone mimics the effects of exercise

10 hours ago

Scientists at the USC Leonard Davis School of Gerontology have discovered a new hormone that fights the weight gain caused by a high-fat Western diet and normalizes the metabolism - effects commonly associated ...

Highly sensitive detection of malaria parasites

12 hours ago

New assays can detect malaria parasites in human blood at very low levels and might be helpful in the campaign to eradicate malaria, reports a study published this week in PLOS Medicine. An international team l ...

How fat breakdown contributes to insulin resistance

18 hours ago

New research from the University of Virginia School of Medicine has shed light on how chronic stress and obesity may contribute to type 2 diabetes. The findings point the finger at an unexpected biological perpetrator – ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.