Promoting muscle regeneration in a mouse model of muscular dystrophy

April 1, 2013

Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the protein dystrophin. Dystrophin functions to protect muscle cells from injury and loss of functional dystrophin results in break down and loss of muscle cells. A cellular signal relay system, known as a MAP kinase cascade, regulates the function of muscle stem cells, serving as a source of the new cells that are required for muscle regeneration.

In this issue of the Journal of Clinical Investigation, researchers led by Anton Bennett at Yale University identified the protein MKP-5 as a negative regulator of MAP kinase cascades in muscle stem cells. Loss of MKP-5 in a mouse model of DMD enhanced the development of new muscle cells (myogenesis) and helped prevent muscle degeneration.

These results identify MKP-5 as an important suppressor of myogenesis and suggest that therapeutics that inhibit MKP-5 could be useful in the treatment of degenerative muscle diseases.

Explore further: Reprogrammed human adult stem cells rescue diseased muscle in mice

More information: Improved regenerative myogenesis and muscular dystrophy in mice lacking MKP-5, J Clin Invest. doi:10.1172/JCI64375

Related Stories

Researchers describe a key mechanism in muscle regeneration

December 19, 2012

Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) have described a new selective target in muscle regeneration. This is the association of alpha-enolase protein and plasmin. The finding could be used to ...

Recommended for you

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.