Nanoparticles boost therapeutic potential of siRNA drugs

April 10, 2013
©2013, Mary Ann Liebert, Inc., publishers

New classes of drugs that can silence specific genes, such as small interfering RNAs (siRNAs), offer great therapeutic potential. But the specific delivery of siRNAs to target cells to exert their effects remains a significant challenge. A novel nanoparticle-based approach that enables more efficient delivery of siRNA drugs is presented in Nucleic Acid Therapeutics.

Compared to a commonly used -based transport agent, the cSCK nanoparticles described in this article better protected siRNAs from being degraded in the and were associated with greater gene silencing efficiency of siRNA drugs.

The study authors, Yuefei Shen, Huafeng Fang, Ke Zhang, and John-Stephen Taylor, Washington University, St. Louis, MO, and Ritu Shrestha and Karen Wooley, Texas A&M University, College Station, TX, attribute the better gene silencing efficiency achieved with cSCKs with improved cell uptake of the siRNAs. They present their findings in the article "Effective Protection and Transfection of siRNA by Cationic Shell-Crosslinked Knedel-Like Nanoparticles (cSCKs)." (http://online.liebertpub.com/doi/full/10.1089/nat.2012.0390)

"The potential of siRNAs as therapeutic agents is immense, but we still have to develop better and more targeted delivery methods for many diseases," says Executive Editor Fintan Steele, PhD, SomaLogic, Inc., Boulder, CO. "The work of Shen and colleagues demonstrates that nanotechnology approaches are rapidly progressing towards the goal of meeting the challenge of delivery."

Explore further: Targeted gene silencing drugs are more than 500 times more effective with new delivery method

More information: The article is available on the Nucleic Acid Therapeutics website (http://www.liebertpub.com/nat).

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.