Computer program identifies rare mutations harbored within diverse populations of cancer cells and microorganisms

April 24, 2013
Computer program identifies rare mutations harbored within diverse populations of cancer cells and microorganisms
LoFreq detects single-nucleotide variants of E. coli bacteria with greater sensitivity than competing programs. Credit: Hemera/Thinkstock

A tumor is not a uniform mass of identical cells. However, teasing apart genetic heterogeneity within a biopsied tumor can be difficult. Researchers often fail to tell the difference between a rare variant in a DNA dataset or a small error because of imprecision in existing high-throughput sequencing technologies.

Now, a new computer program developed at A*STAR could help. Thanks to open-source software called LoFreq—so-called because it can detect mutations at extremely —researchers can reliably pick out rare subpopulations of cells from heterogeneous populations of , microorganisms and other .

"This is key to a wide range of scientific investigations, from understanding how pathogens evolve and escape the immune system, to uncovering the processes through which cancers grow and spread," says Niranjan Nagarajan, a senior scientist at the A*STAR Genome Institute of Singapore, who helped to develop the program.

Nagarajan and his co-workers wrote the algorithm that forms the foundations of LoFreq. Their aim was for the software not only to adapt to sequencing biases, but also to detect single DNA differences with frequencies below the specific level of noise introduced by sequencing errors. The researchers first tested the program against existing computer programs for analyzing large DNA datasets using simulated sequences from dengue virus. They then validated the approach using real genomic libraries from samples of (see image), human biopsies, and dengue viruses collected before and after treatment—an exposure that often leads to the evolution of in some subpopulations of virus.

"Previous attempts to describe this evolution have had to wait for the selection process to near completion," Nagarajan says. "In this new work, we have greatly increased the sensitivity of detecting these mutations and thus can catch their evolution in 'real time', observing how this process develops."

LoFreq proved itself to have near-perfect specificity for rare variants, with significantly improved sensitivity compared to existing methods, regardless of the high-throughput sequencing platform. The method also pinpointed a handful of low-frequency polymorphisms in whole-genome readouts from individual gastric cancer patients, and flagged mutational hotspots in dengue samples from a clinical drug trial.

"Almost anybody who is interested in studying evolutionary processes at a higher resolution, ranging from researchers who study how viruses and bacteria evolve and become more pathogenic, to cancer scientists looking at the evolution of a tumor," could benefit from LoFreq, Nagarajan says. The software is freely available via this link.

More information: Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Research 40, 11189–11201 (2012).

Related Stories

Single-cell sequencing leads to a new era of cancer research

March 2, 2012

BGI, the world's largest genomics organization, developed single-cell genome sequencing technology and published two research papers for cancer single-cell sequencing in the research journal Cell. In the papers, which were ...

Sequencing cancer mutations: there's an app for that

April 3, 2012

Using precise information about an individual's genetic makeup is becoming increasingly routine for developing tailored treatments for breast, lung, colon and other cancers. But techniques used to identify meaningful gene ...

Detecting tumour cells individually

May 16, 2012

(Medical Xpress) -- Swiss researchers have devised a method to detect mutations in tumor cells that are only present in a proportion of the cancer’s cells. The analysis reveals that cells of individual tumours are more ...

Recommended for you

New treatment options for a fatal leukemia

July 27, 2015

In industrialized countries like in Europe, acute lymphoblastic leukemia is the most common form of cancer in children. An international research consortium lead by pediatric oncologists from the Universities of Zurich and ...

Exciting results from cancer immunoagent study

July 20, 2015

(Medical Xpress)—Cancer therapies have improved incrementally over the years, but cancer treatment largely remains analogous to forest fire suppression, in which the spread of fire is contained with deliberate controlled ...

Lymphomas tied to metabolic disruption

July 17, 2015

Researchers from the School of Medicine at The University of Texas Health Science Center at San Antonio have found evidence that directly links disrupted metabolism (energy production in cells) to a common and often fatal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.