Scientists identify important regulator for synapse stability and plasticity

April 25, 2013
FMI scientists identify important regulator for synapse stability and plasticity
A Drosophila neuromuscular junction. Motoneuron membrane (blue), synaptic vesicles (green), postsynaptic density (red).

(Medical Xpress)—Using the fruit fly as a model organism, neurobiologists from the Friedrich Miescher Institute for Biomedical Research have identified the L1-type CAM neuroglian as an important regulator for synapse growth, function and stability. They show that the interaction of neuroglian with ankyrin provides a regulatory module to locally control synaptic connectivity and function.

From its earliest beginnings until an organism's death, the nervous system changes. Connections between nerve cells are formed, stabilized and disassembled not only during the development of the brain in the womb and in early childhood, but also in adults as they learn or form memories. In this flow of change, cell adhesion molecules (CAMs), which mediate cell-, are thought to provide stability and guidance in a Velcro-like-manner as synapses change.

Jan Pielage and his group at the Friedrich Miescher Institute for Biomedical Research have carried out an unbiased genetic screen to identify cell adhesion molecules that control synapse maintenance and plasticity, using the fruit fly, . As they publish in the latest issue of PLOS Biology, they identified the called neuroglian as a key regulator for synapse stability.

Neuroglian is a transmembrane protein with a large extracellular domain and an intracellular signaling domain. Through the extracellular domain interactions with CAMs on neighboring cells are established. This stabilizes the site and is a prerequisite for synapse formation. "We think that the extracellular interactions of neuroglian are essential for neurite outgrowth and axon targeting during early development," explains Pielage.

The scientists could then show that the intracellular domain, which interacts with the adaptor molecule called ankyrin, modulates the stability of synapses. At the , where innervate the muscle, the strength of the interaction of neuroglian with ankyrin modulates the balance between synapse growth and stability. As the binding affinity of ankyrin for neuroglian decreased, e.g. due to phosphorylation, the mobility of neuroglian within the motorneuron increased. This change in mobility caused the destabilization of synapses but at the same time, it allowed the formation of new synapses at other places. "This organization permits easy regulation, and allows the fine tuning of synaptic connectivity along one nerve cell without disrupting the neuronal network or impairing overall circuit stability," said Pielage.

In the central nervous system, where synapses are formed between two neurons, a homophilic interaction of neuroglian is required to establish the contact between pre- and postsynaptic neurons. A differential regulation of ankyrin binding is then necessary to coordinate transsynaptic development and to enable synapse maturation and function. "Modulation of the neuroglian-ankyrin interaction might enable local and precise control of synaptic connectivity," comments Pielage.

This comprehensive structure function study provides a molecular basis for previous observations linking mutations in the ankyrin binding domain of the human homologue of neuroglian, L1CAM, to neurological L1/CRASH disorders that include mental retardation.

Explore further: Protein family linked to autism suppresses the development of inhibitory synapses

More information: Enneking, E. et al. (2013) Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM neuroglian. PLOS Biology, 11: e1001537.

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.