Scientists find mutation driving pediatric brain tumors

A type of low-grade but sometimes lethal brain tumor in children has been found in many cases to contain an unusual mutation that may help to classify, diagnose and guide the treatment of the tumors, report scientists at Dana-Farber Cancer Institute.

The researchers led a study of pediatric low-grade gliomas, samples of which were collected through an international consortium organized by brain specialists at Dana-Farber/Children's Hospital Cancer Center. Their findings are being published online by the Proceedings of the National Academy of Sciences (PNAS) the week of April 29.

Low-grade gliomas are the most common type of , diagnosed in about 1,000 young patients annually in the United States. There are about 30 distinct types of these tumors, which arise from specialized cells called glia in the brain. Low-grade gliomas are generally slow-growing, said Keith Ligon, MD, PhD, a senior author of the study, but they behave unpredictably and can be life-threatening.

The investigators focused on diffuse low-grade gliomas, so-called because they lack a tumor mass but spread throughout the . As a result, diffuse gliomas often recur after surgery and are more likely to evolve into lethal than are non-diffuse low-grade tumors. "Many of these patients do well, but it's hard to generalize as the tumors are difficult to diagnose and study because without better tools pathologists can't name them consistently," explained Ligon, who in addition to being a researcher is also a neuropathologist. The research was undertaken in hopes of identifying a common that could be used to better define and design treatments for them.

The researchers analyzed DNA from 45 tissue samples collected from seven institutions in collaboration with Rameen Beroukhim, MD, PhD, a Dana-Farber genome biologist and co- senior author of the study. They looked for mutations caused by extra or missing copies of in the tumor genomes.

One alteration stood out: a gene called MYBL1, a transcription factor important for controlling other genes, was rearranged and missing a part of its genetic message in nearly 30 percent of the diffuse tumors categorized as grade 2 in terms of aggressiveness. The scientists went on to show that the mutated version of MYBL1 can cause tumors in mice. Previously MYLB1 was not known to cause cancer, but a closely related gene, MYB, is one of the oldest "proto-oncogenes" – a normal gene that can become a cancer-causing gene.

"The creation of these truncated genes, reminiscent in structure of the viral oncogene, is a potential driver for this type of tumor," said Lori Ramkissoon, PhD, co-first author along with Peleg Horowitz, MD, PhD, a neurosurgery resident, both of Dana-Farber. "It gives us something to follow up on and investigate the function of this gene. It may lead to a specific test for diagnosing these tumors, and we will also try to determine whether patients who have this mutation do better or worse than those lacking the mutation."

Related Stories

Recommended for you

Science of romantic relationships includes gene factor

9 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.