Stem cells fill gaps in bones

April 4, 2013

For many patients the removal of several centimetres of bone from the lower leg following a serious injury or a tumour extraction is only the beginning of a long-lasting ordeal. Autologous stem cells have been found to accelerate and boost the healing process. Surgeons at the RUB clinic Bergmannsheil have achieved promising results: without stem cells, it takes on average 49 days for one centimetre of bone to regrow; with stem cells, that period has been reduced to 37 days.

In the past, large bone defect inevitably led to an . Today, the arm or leg is stabilised in an external support, and a transport wire is pulled through the marrow of the intact part of the injured bone. Once the soft tissue surrounding the injury is healed, the surgeons cut the healthy part of the bone into two. The transport wire is affixed to the winches of a ring fixator that is attached around the leg. Using a sophisticated cable-pull system, the previously detached part of the bone is slowly pulled either downwards or upwards along the gap in the bone until it arrives and docks at the other end. During the pulling stage, the periosteum of the bone that had been pulled apart had been continuously stretched. Thus, a periosteum tube is created in the gap behind the relocated portion of the bone. Inside that tube, the new bone can regenerate. This process, however, is extremely tedious and the treatment fails in every firth case.

Processing autologous stem cells in the operating theatre

Surgeons at the RUB clinic Bergmannsheil attempt to optimise the by applying autologous stem cells therapy. Depending on the requirements, stem cells are capable of evolving into different types of , including so-called osteoblasts – cells that are responsible for . such as are deployed in the process can be found in the of adults. "We harvest them by inserting a hollow needle into the iliac crest," explains PD Dr Dominik Seybold, managing consultant at the clinic. The stem cells are prepared for application directly on location. Under x-ray control, the surgeons inject six to eight millilitres of the concentrated fluid into the centre of the tube. X-ray controls are routinely performed to monitor the recovery progress. To date, the RUB physicians have applied this therapy in 20 cases. "This is not enough to be statistically relevant," admits Dr Seybold. Nevertheless, the researchers find the results very encouraging: whilst the bone regeneration process without used to take 49 days on average, it has been reduced to 37 days on average thanks to the new therapy method. So far, RUB scientists have been treating bone defects with an average length of eight centimetres – consequently, the patients thus recovered, on average, three months sooner.

Explore further: Recipient's immune system governs stem cell regeneration

Related Stories

Recipient's immune system governs stem cell regeneration

November 20, 2011

A new study in Nature Medicine describes how different types of immune system T-cells alternately discourage and encourage stem cells to regrow bone and tissue, bringing into sharp focus the importance of the transplant recipient's ...

Gene therapy as a new option for bone defects

December 7, 2012

(Medical Xpress)—Gene therapy involving modified stem cells obtained from fatty tissue and bone marrow could represent a new option for the treatment of severe orthopaedic injuries to the extremities. This treatment has ...

Recommended for you

An accessible approach to making a mini-brain

October 1, 2015

If you need a working miniature brain—say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work—a new paper describes how to build one with what the Brown University authors say ...

Tension helps heart cells develop normally in the lab

October 1, 2015

The heart is never quite at rest, and it turns out that even in a lab heart cells need a little of that tension. Without something to pull against, heart cells grown from stem cells in a lab dish fail to develop normally.

Dormant viral genes may awaken to cause ALS

September 30, 2015

Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS). The ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.