Researchers help find new therapeutic target for treating traumatic brain injury

(Medical Xpress)—A research team including members of the Department of Bioengineering in the University of Pennsylvania School of Engineering and Applied Science has discovered that drug intervention to reduce intercellular signaling between astrocytes following traumatic brain injury reduces cognitive deficits and damage.

David F. Meaney led the study alongside members of his lab and researchers from Penn's Perelman School of Medicine, Columbia University, Rutgers University and Tufts University.

It was published in the journal Brain.

will be the third highest cause of death and disability in the world by 2020, according to researchers. Existing therapies, which focus on the early changes that occur within neurons of the brain after injury, may interfere with the brain's processing of information through its connected networks.

The collaborative group of investigators discovered that intercellular signaling between astrocytes, the star-shaped glial cells in the brain and spinal cord, plays a prominent role in cell death after brain injury. The team found that a single injury to the brain can trigger widespread signaling through the astrocyte network, which can adversely affect the communication among neurons in the network.

"We were initially very surprised that the effect of astrocyte signaling on neuronal communication was so profound after injury," Meaney said.

By studying how these changes traveled through the astrocytes in the brain and in cell culture, the team discovered one specific type of signaling that could reduce the response dramatically. After screening several , the team showed that one type of drug could improve cognitive recovery following a single traumatic brain injury.

"We are very excited at the promise of this new direction for treating ," Meaney said, "because it may represent a different angle of attack for treating a complicated disease."

More information: brain.oxfordjournals.org/content/136/1/65.long

add to favorites email to friend print save as pdf

Related Stories

Astrocyte signaling sheds light on stroke research

Mar 18, 2013

New research published in The Journal of Neuroscience suggests that modifying signals sent by astrocytes, our star-shaped brain cells, may help to limit the spread of damage after an ischemic brain stroke. The study in mic ...

Recommended for you

Common infections tied to some stroke risk in kids

12 hours ago

A new study suggests that colds and other minor infections may temporarily increase stroke risk in children. The study found that the risk of stroke was increased only within a three-day period between a ...

Celebrities in 'Ice Bucket Challenge' to fight disease

23 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

Aug 20, 2014

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

Aug 20, 2014

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments