Development of novel therapies for endothelial damage may heal atherosclerotic plaques

April 21, 2013

Heart disease and approximately half of all strokes are the results of advanced atherosclerosis with damaged endothelium, the inner lining of blood vessels. In 2009, the direct and indirect annual cost of heart disease and stroke was approximately $312.6 billion. Projections are for the total cost of heart disease to increase from $523 to $1.126 billion from 2013 to 2030. And by 2030, it is expected that there will be more than 148 million of the US population would have heart disease. Development of new technologies for assessing and treating endothelium damage will help reduce that financial burden as reduce the human health burden resulting from atherosclerosis.

Dr. Hua Pan, Research Instructor in Medicine at Dr. Samuel Wickline's Laboratory in Washington University School of Medicine, investigated and developed novel therapies for endothelial barrier damage. The evolution and severity of endothelium damage in advanced atherosclerotic plaque remain unknown, in part because quantifiable methods are lacking for its in vivo assessment. Her latest study is the first to demonstrate, in a well-established atherosclerosis mouse model, ApoE deficient mice, a multifunctional perfluorocarbon (PFC) nanoparticle (NP) for quantification of endothelial damage as well as targeted anti- delivery to the endothelium damage site.

The study, conducted in ApoE deficient mice, quantified endothelium damage by using PFC NP retained in mouse aorta as surrogate. It demonstrated the evolution and severity of endothelium damage in correlation to the length of the animal fat-diet consumption. Moreover, the same PFC NP loaded with anti-inflammatory drug, NF-κB inhibitor, down-regulated inflammation. Dr. Wickline noted, this finding provided a new avenue for defining disease stage and for following therapy to heal dangerous .

Her findings will be presented April 22, 2013 during 2013 in Boston, MA.

Explore further: Researchers identify drug target for atherosclerosis

Related Stories

Genetic factor holds key to blood vessel health

November 19, 2012

Researchers at Case Western Reserve University School of Medicine have identified a genetic factor that prevents blockages from forming in blood vessels, a discovery that could lead to new therapies for cardiovascular diseases.

Recommended for you

Heart attack treatment hypothesis 'busted'

July 6, 2015

Researchers have long had reason to hope that blocking the flow of calcium into the mitochondria of heart and brain cells could be one way to prevent damage caused by heart attacks and strokes. But in a study of mice engineered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.