Researchers untangle molecular pathology of giant axonal neuropathy

April 15, 2013

Giant axonal neuropathy (GAN) is a rare genetic disorder that causes central and peripheral nervous system dysfunction. GAN is known to be caused by mutations in the gigaxonin gene and is characterized by tangling and aggregation of neural projections, but the mechanistic link between the genetic mutation and the effects on neurons is unclear.

In this issue of the Journal of Clinical Investigation, Robert Goldman and colleagues at Northwestern University uncover how mutations in gigaxonin contribute to neural aggregation.They demonstrated that gigaxonin regulates the degradation of neurofilament proteins, which help to guide outgrowth and morphology of neural projections.

Loss of gigaxonin in either GAN patient cells or increased levels of neurofilament proteins, causing tangling and aggregation of neural projections. Importantly, expression of gigaxonin allowed for clearance of neurofilament proteins in neurons.

These findings demonstrate that mutations in gigaxonin cause accumulation of neurofilament proteins and shed light on the molecular pathology of GAN.

Explore further: Marker of Ewing sarcoma: Potential new drug target?

More information: Giant axonal neuropathy–associated gigaxonin mutations impair intermediate filament protein degradation, J Clin Invest. doi:10.1172/JCI66387

Related Stories

Acetylation may contribute to dementia and Alzheimer's disease

September 22, 2010

A new study uncovers a protein modification that may contribute to the formation of neuron-damaging neurofibrillary tangles in the human brain. The research, published by Cell Press in the September 23 issue of the journal ...

A gut feeling about neural stem cells

February 1, 2013

Proper function of the digestive system requires coordinated contraction of the muscle in the wall of the intestinal tract, regulated by the enteric nervous system. Damage or loss of these neurons can result in intestinal ...

Recommended for you

Next steps in understanding brain function

August 26, 2016

The most complex piece of matter in the known universe is the brain. Neuroscientists have recently taken on the challenge to understand brain function from its intricate anatomy and structure. There is no sure way to go about ...

Scientists map brain's action center

August 25, 2016

When you reach for that pan of brownies, a ball-shaped brain structure called the striatum is critical for controlling your movement toward the reward. A healthy striatum also helps you stop yourself when you've had enough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.