Baby's life saved with groundbreaking 3-D printed device that restored his breathing

In this summer 2012 photo provided by the University of Michigan Health System, a device is shown similar to the one used to save the life of Kaiba Gionfriddo of Youngstown, Ohio. In a medical first, doctors at the University of Michigan Health System used plastic particles and a 3-D laser printer to create an airway splint to save the life of a baby boy who used to stop breathing nearly every day. It's the latest advance from the booming field of regenerative medicine, making body parts in the lab. Credit: University of Michigan Health System

Every day, their baby stopped breathing, his collapsed bronchus blocking the crucial flow of air to his lungs. April and Bryan Gionfriddo watched helplessly, just praying that somehow the dire predictions weren't true.

"Quite a few doctors said he had a good chance of not leaving the hospital alive," says April Gionfriddo, about her now 20-month-old son, Kaiba. "At that point, we were desperate. Anything that would work, we would take it and run with it."

They found hope at the University of Michigan, where a new, bioresorbable device that could help Kaiba was under development. Kaiba's doctors contacted Glenn Green, M.D., associate professor of at the University of Michigan.

Green and his colleague, Scott Hollister, Ph.D., professor of biomedical engineering and mechanical engineering and associate professor of surgery at U-M, went right into action, obtaining emergency clearance from the to create and implant a tracheal splint for Kaiba made from a biopolymer called polycaprolactone.

On February 9, 2012, the specially-designed splint was placed in Kaiba at C.S. Mott Children's Hospital. The splint was sewn around Kaiba's airway to expand the bronchus and give it a skeleton to aid proper growth. Over about three years, the splint will be reabsorbed by the body. The case is featured today in the New England Journal of Medicine.

"It was amazing. As soon as the splint was put in, the lungs started going up and down for the first time and we knew he was going to be OK," says Green.

Green and Hollister were able to make the custom-designed, custom-fabricated device using high-resolution imaging and computer-aided design. The device was created directly from a of Kaiba's trachea/bronchus, integrating an image-based with laser-based 3D printing to produce the splint.

"Our vision at the University of Michigan Health System is to create the future of health care through discovery. This collaboration between faculty in our Medical School and College of Engineering is an incredible demonstration of how we achieve that vision, translating research into treatments for our patients," says Ora Hirsch Pescovitz, M.D., U-M executive vice president for medical affairs and CEO of the U-M Health System.

"Groundbreaking discoveries that save lives of individuals across the nation and world are happening right here in Ann Arbor. I continue to be inspired and proud of the extraordinary people and the amazing work happening across the Health System."

Kaiba was off ventilator support 21 days after the procedure, and has not had breathing trouble since then.

"The material we used is a nice choice for this. It takes about two to three years for the to remodel and grow into a healthy state, and that's about how long this material will take to dissolve into the body," says Hollister.

"Kaiba's case is definitely the highlight of my career so far. To actually build something that a surgeon can use to save a person's life? It's a tremendous feeling."

The image-based design and 3D biomaterial printing process can be adapted to build and reconstruct a number of tissue structures. Green and Hollister have already utilized the process to build and test patient specific ear and nose structures in pre-clinical models. In addition, the method has been used by Hollister with collaborators to rebuild bone structures (spine, craniofacial and long bone) in pre-clinical models.

Severe tracheobronchomalacia is rare. About 1 in 2,200 babies are born with tracheomalacia and most children grow out of it by age 2 or 3, although it often is misdiagnosed as asthma that doesn't respond to treatment.

Severe cases, like Kaiba's, are about 10 percent of that number. And they are frightening, says Green. A normal cold can cause a baby to stop breathing. In Kaiba's case, the family was out at a restaurant when he was six weeks old and he turned blue.

"Severe tracheobronchomalacia has been a condition that has bothered me for years," says Green. "I've seen children die from it. To see this device work, it's a major accomplishment and offers hope for these children."

Before the device was placed, Kaiba continued to stop breathing on a regular basis and required resuscitation daily.

"Even with the best treatments available, he continued to have these episodes. He was imminently going to die. The physician treating him in Ohio knew there was no other option, other than our device in development here," Green says.

Kaiba is doing well and he and his family, including an older brother and sister, live in Ohio.

"He has not had another episode of turning blue," says April. "We are so thankful that something could be done for him. It means the world to us."

More information: DOI: 10.1056/NEJMc1206319

add to favorites email to friend print save as pdf

Related Stories

Long arm cast best for immobilizing forearm

Mar 26, 2012

(HealthDay) -- Use of a long arm cast provides the best restriction of forearm rotation, according to a study published in the March 7 issue of The Journal of Bone & Joint Surgery.

Wrist splints in children as effective as casts

Sep 07, 2010

In children with wrist fractures, a splint is as effective as a cast and provides greater comfort and easier hygiene, found a study published in CMAJ (Canadian Medical Association Journal).

Recommended for you

Researchers explore what happens when heart cells fail

2 minutes ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

2 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

Human brain has coping mechanism for dehydration

15 hours ago

(HealthDay)—Although dehydration significantly reduces blood flow to the brain, researchers in England have found that the brain compensates by increasing the amount of oxygen it extracts from the blood. ...

User comments