Researchers develop novel Brain Training Device to reconnect brain and paralyzed limb after stroke

May 16, 2013

The world's first Brain Training Device has given a ray of new hope to the recovery of survivors after stroke. Developed by researchers of The Hong Kong Polytechnic University, this novel device can detect brainwave and control the movement of paralyzed limbs.

The world's first Device has given a ray of new hope to the recovery of survivors after stroke. Developed by researchers of The Hong Kong Polytechnic University (PolyU)'s Interdisciplinary Division of Biomedical Engineering (BME), this which can detect brainwave, and thereby control the movement of paralyzed limbs, or go even further to control a based on its .

The research was led by Prof. Raymond Tong Kai-yu, Professor of PolyU's Interdisciplinary Division of Biomedical Engineering, who is also the Principal Investigator of the award-winning Exoskeleton Hand Robotic Training Device or the "Hand of Hope".

The latest breakthrough "Brain Training Device" can be coupled with the use of the "Hand of Hope" to achieve higher degree of recovery for . While effective motor recovery after stroke depends on early and intensive voluntary practice of the paretic limbs, current rehabilitation products have not use brainwave to guide the to identify voluntary intention and to relearn how to reconnect to their paralyzed limb again.

Prof. Raymond Tong and his team therefore developed the Brain Training Device with a new coherence algorithm for hand function training. The new algorithm is based on frequency coherence on surface electroencephalography (EEG, brainwave) and electromyography (EMG, muscle activities) to identify voluntary intention and their connection.

"The Brain Training Device is able to guide the stroke patients to relearn the between the brain and the limb, with a new design on the EEG headset and the EMG forearm brace to transmit data for controlling a hand interfaced by a telecare software platform using iPad app." Prof. Raymond Tong explained.

The patented Brain Training System, which looks like a helmet for cyclist and can read brainwaves, also has new features to find the specific EEG electrode locations for each individual stroke patient and reduce the number of EEG electrodes, which can reduce the system cost and the preparation time for brain training, added by Prof. Tong.

To find a minimal set of electrodes to control the device with accuracy higher than 90%, five chronic stroke patients were recruited to be trained for 20 sessions in the study. The researchers found that, in general, 32 electrodes are needed to maintain accuracy higher than 90%.

The high accuracy and low number of channels needed means that the Brain Training Device is a viable tool for assistive aid and rehabilitation training. The futuristic system will be made portable and easy-to-use at hospital and home settings.

PolyU researchers have already filed patents for this Brain Training Device in both the United States and China. This project is funded by the HKSAR Government's Innovation and Technology Fund (ITF). The findings of this brain control algorithm have been published as the cover story in top international journal IEEE Transactions on Neural Systems and Rehabilitation Engineering (2011.12).

Explore further: Next generation gamers: Computer games aid recovery from stroke

Related Stories

Predicting recovery after stroke

August 1, 2012

(Medical Xpress) -- In work that may revolutionise rehabilitation for stroke patients, researchers from The University of Auckland and the Auckland District Health Board have shown it is possible to predict an individual’s ...

Brain wave-reading robot might help stroke patients

August 20, 2012

(Medical Xpress) -- What comes naturally to most people – to think and then do – is difficult for stroke patients who have lost the full use of their limbs. New research by Rice University, the University of Houston ...

SMART Arm helps stroke survivors recover faster

November 9, 2012

(Medical Xpress)—A non-robotic device that helps stroke survivors regain upper limb movement is expected to be commercially available in Australia within the next 12 months.

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.