Breakthrough on Huntington's disease

May 23, 2013

Researchers at Lund University have succeeded in preventing very early symptoms of Huntington's disease, depression and anxiety, by deactivating the mutated huntingtin protein in the brains of mice.

"We are the first to show that it is possible to prevent the of Huntington's disease by deactivating the diseased protein in nerve in the hypothalamus in the brain. This is hugely exciting and bears out our previous hypotheses", explains Åsa Petersén, Associate Professor of Neuroscience at Lund University.

Huntington's is a debilitating disease for which there is still neither cure nor sufficient treatment. The dance-like movements that characterise the disease have long been the focus for researchers, but the emotional problems affect the patient earlier than the motor symptoms. These are now believed to stem from a different part of the brain – the small emotional centre called the hypothalamus.

"Now that we have been able to show in animal experiments that depression and anxiety occur very early in Huntington's disease, we want to identify more specifically which in the hypothalamus are critical in the development of these symptoms. In the long run, this gives us better opportunities to develop more accurate treatments that can attack the mutated huntingtin where it does the most damage", says Åsa Petersén.

As the role of the in Huntington's disease is gradually mapped, knowledge might be gained from drug research for other psychiatric diseases. It is likely that similar mechanisms control different types of depression, according to Åsa Petersén.

Explore further: New discovery proves cause of weight problems in Huntington's disease

More information: Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington's disease, Hum. Mol. Genet. (2013) doi: 10.1093/hmg/ddt203 . First published online: May 22, 2013

Related Stories

Scientists tackle Huntington's disease by targeting mutant gene

November 6, 2012

Huntington's disease is an inherited, neurodegenerative disorder that usually appears in mid-adult life and leads to uncoordinated body movements and cognitive decline. The disease is due to multiple repetitions of a deoxyribonucleic ...

Immune cell migration is impeded in Huntington's disease

November 19, 2012

Huntington disease (HD) is an incurable neurodegenerative disease caused by a mutation in the huntingtin gene (htt). Though most of the symptoms of HD are neurological, the mutant HTT protein is expressed in non-neural cells ...

Research reveals Huntington's hope

February 27, 2013

(Medical Xpress)—Researchers in Scotland and Germany have discovered a molecular mechanism that shows promise for developing a cure for Huntington's Disease (HD).

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.