Not all cytokine-producing cells start out the same way, study finds

May 13, 2013

(Medical Xpress)—Cytokines are molecules produced by immune cells that induce the migration of other cells to sites of infection or injury, promote the production of anti-microbial agents, and signal the production of inflammatory mediators. These events are important for fighting infections. However, sometimes this process goes unchecked, resulting in unwanted inflammation that can damage tissues and organs.

Interleukin 17, or IL17, is a well-studied cytokine that regulates immune function at mucosal surfaces in the body but is dysregulated in many diseases, such as multiple sclerosis, , and psoriasis.

Not all IL17-producing are the same, and the rules regarding how particular are instructed to produce this important mediator differ. Research published this week in Nature Immunology, from the Perelman School of Medicine at the University of Pennsylvania by Gary Koretzky, MD, PhD, the Francis C. Wood professor of Medicine and Investigator in the Abramson Family Cancer Research Institute; Martha Jordan, PhD, research assistant professor in Pathology and Laboratory Medicine, Jiyeon Kim, an MD-PhD student in the Koretzky lab, and other members of the Perelman School community including Morris Birnbaum, MD, PhD from the Department of Medicine and scientists in the laboratory of Celeste Simon, PhD, from the Abramson Family Cancer Research Institute and the Department of Cell and , sheds light on the intricacies of those instructions.

T- that are present in are known to be a prominent source of IL17. These cells interact with microbial organisms, in particular in the , and are instructed or "induced" to produce and secrete IL17. These inducible, T-helper, IL17-producing cells are found predominantly at mucosal sites and are important for maintaining the health of these tissues.

"Natural" IL17-producing cells, on the other hand, do not have to interact with microorganisms to become capable of making this important cytokine. What these natural IL17-producing T cells do and how they are instructed to produce IL17 has become a research focus for Jordan and Koretzky.

"Although we know much less about natural IL17-producing cells, previous work from our laboratory demonstrated that these cells obtain their ability to produce this cytokine as they develop in the thymus," says Koretzky. "The current study in compares the signals used by inducible versus natural IL-17 cells that are necessary for cytokine production, testing the hypothesis that they are distinct populations of cells. This may one day help us to develop tools to manipulate one cell population while leaving the other untouched."

The team found evidence that the inducible versus natural cells do, in fact, have very different characteristics. Although the kinase Akt plays a critical role in regulating cytokine production by both cell types, how these cell types use Akt differs. For example, mTORC1, a protein complex activated by Akt, is critical for the generation of inducible IL17-producing cells in the gut; however, natural IL17 cells develop independently of mTORC1. This finding suggests that the trigger for the development of inducible versus natural IL17-producing cells is different. To probe this finding further, Koretzky and Jordan focused attention on different forms of Akt.

Previous work by many laboratories defined different subtypes of Akt, and emerging data suggest that these forms may have differential functions in various tissues.

This finding was extended to inducible and natural IL17-producing T cells in the current Nature Immunology publication, as the team found that one particular form of Akt—Akt2—is necessary for optimal inducible cell development but dispensable for natural IL17-producing cells. The findings show how a previously unknown role of Akt and its partner molecules shapes the maturation of IL17-producing cells.

Understanding the rules that govern IL17 cell development and function will suggest ways to specifically modulate one population or the other, which may be important during IL17-mediated immune responses, especially when that response spins out of control.

Explore further: Cell receptor has proclivity for T helper 9 cells, airway inflammation

More information:

Related Stories

Recommended for you

Snapshot turns T cell immunology on its head

October 6, 2015

Challenging a universally accepted, longstanding consensus in the field of immunity requires hard evidence. New research from the Australian Research Council Centre of excellence in advanced Molecular imaging has shown the ...

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.