'Dark genome' is involved in Rett Syndrome

'Dark genome' is involved in Rett Syndrome
This image shows Manel Esteller, IDIBELL, Director of the Cancer Epigenetics and Biology Program. Credit: Manel Esteller, IDIBELL researcher

Researchers at the Epigenetics and Cancer Biology Program at IDIBELL led by Manel Esteller, ICREA researcher and professor of genetics at the University of Barcelona, have described alterations in noncoding long chain RNA sequences (lncRNA) in Rett syndrome.

These molecules act as supervisor agents responsible of 'switch on' or 'switch off' other genes in our genome that regulate the activity of neurons. The work has been published in the last issue of the journal RNA Biology.

Dark genome

Only 5% of our genetic material are genes that encode proteins. The remaining 95% is known as dark genome or non-coding DNA and its function is still unknown. Part of this DNA produces called noncoding long chain RNA (lncRNAs).

Rett Syndrome

Rett syndrome is a neurodevelopmental disease and it is the second most common cause of mental retardation in females after Down syndrome. Clinical symptoms occur between 6 and 18 months after birth and consist of a loss of cognitive, social and motor capacities accompanied by , eg, stereotypic hand movements.

Today there is no effective treatment of the disease but the control of their symptoms. The syndrome is usually due to the presence of a mutation in MeCP2 epigenetic gene that, as a magnet, regulates the expression of many other genes of the cell.

Esteller's team works with a that faithfully reproduces the characteristics of the human Rett syndrome. In this study, researchers compared the expression of long chains of RNA in healthy and diseased animals and found that the presence of mutations in the Mecp2 gene causes alterations in the activity of lncRNA.

One such altered lncARN regulates the function of a key neurotransmitter in the nervous system in all vertebrates brain (GABA receptor). "Its alteration", says Esteller, "could explain the defects of communication between neurons in girls affected by ."

According to Manel Esteller "this finding, in addition to increasing knowledge about the causes of the disease, could open the door to new therapeutic strategies that target lncRNA molecules or GABA receptor."

More information: Petazzi P., Sandoval J., Szczesna K., Jorge O.C., Roa L., Sayols S., Gomez A., Huertas D. and Esteller M. Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. RNA Biology, 10(7), 2013.

add to favorites email to friend print save as pdf

Related Stories

Researchers complete the first epigenome in Europe

May 30, 2012

A study led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of genetics at the University of Barcelona and ICREA researcher, has ...

Developmental disease is recreated in an adult model

Jun 02, 2011

A new study published today in the journal Science has shown that the childhood disorder Rett syndrome, can be reestablished in adult animals by "switching off" a critical disease causing gene in healthy adult animals. The g ...

Mapping the neuron-behavior link in Rett Syndrome

Sep 24, 2008

A link between certain behaviors and the lack of the protein associated with Rett Syndrome – a devastating autism spectrum disorder – demonstrates the importance of MeCP2 (the protein) and reveals never-before recognized ...

Recommended for you

Throwing a loop to silence gene expression

4 hours ago

All human cells contain essentially the same DNA sequence – their genetic information. How is it possible that shapes and functions of cells in the different parts of the body are so different? While every cell's DNA contains ...

A nucleotide change could initiate fragile X syndrome

Sep 01, 2014

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

User comments