Ebola's secret weapon revealed

May 2, 2013

Researchers have discovered the mechanism behind one of the Ebola virus' most dangerous attributes: its ability to disarm the adaptive immune system.

University of Texas Medical Branch at Galveston scientists determined that short-circuits the immune system using proteins that work together to shut down cellular signaling related to interferon. Disruption of this activity, the researchers found, allows Ebola to prevent the full development of dendritic cells that would otherwise trigger an immune response to the virus.

"Dendritic cells typically undergo a process called 'maturation' when they're infected by a virus—they change shape and present antigens on their surface that tell T-cells to attack that particular virus, thus generating an adaptive immune response," said UTMB professor Alexander Bukreyev, senior author of a paper on the discovery now online in the Journal of Virology. "But Ebola prevents dendritic-cell maturation and produces a severe infection without an effective . We found that its ability to do this depends on several specific regions of two different proteins."

Bukreyev's research group made the discovery after a series of procedures that started with a clone of the Ebola Zaire . Working under maximum-containment conditions in a biosafety level 4 facility in UTMB's Galveston National Laboratory, the team introduced mutations into the virus' at four locations thought to generate proteins that affected immune response.

They then infected human dendritic cells with each of the resulting new strains and compared the results with those produced by unmutated Ebola Zaire. Each of the four new viruses, they found, was unable to suppress dendritic-cell maturation.

"We saw two very interesting things," Bukreyev said. "First, that these mutations restore maturation of dendritic cells very effectively, and second, that a mutation in even one of these genetic domains makes the virus unable to suppress maturation. That means that the virus needs multiple combined effects in order to undermine the immune system in this way."

Ebola's ability to evade the human immune response is one of the factors that accounts for its high mortality rate—up to 90 percent in humans—and the notoriety that it gained after its first appearance in Zaire in 1976, in an outbreak that killed 280 people. Zaire—now the Democratic Republic of the Congo—is the home country of Ndongala Lubaki, lead author on the paper and a postdoctoral fellow at UTMB.

Explore further: Ebola virus uses a protein decoy to subvert the host immune response

Related Stories

Recommended for you

An accessible approach to making a mini-brain

October 1, 2015

If you need a working miniature brain—say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work—a new paper describes how to build one with what the Brown University authors say ...

Tension helps heart cells develop normally in the lab

October 1, 2015

The heart is never quite at rest, and it turns out that even in a lab heart cells need a little of that tension. Without something to pull against, heart cells grown from stem cells in a lab dish fail to develop normally.

Dormant viral genes may awaken to cause ALS

September 30, 2015

Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS). The ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.