Researchers discover a missing link in signals contributing to neurodegeneration

May 9, 2013

In many neurodegenerative diseases the neurons of the brain are over-stimulated and this leads to their destruction. After many failed attempts and much scepticism this process was finally shown last year to be a possible basis for treatment in some patients with stroke. But very few targets for drugs to block this process are known.

In a new highly detailed study, researchers have discovered a previously missing link between over-stimulation and destruction of , and shown that this might be a target for future drugs. This research, led by the A. I. Virtanen Institute at the University of Eastern Finland in collaboration with scientists from Lausanne University Hospital, University of Lausanne and the company Xigen Pharma AG, was published in the Journal of Neuroscience.

What is this missing link? We have known for years that over-stimulated neurons produce nitric oxide molecules. Although this can activate a signal for destruction of cells, the small amount of nitric oxide produced cannot alone explain the damage to the brain. The team now show that a protein called NOS1AP links the nitric oxide that is produced to the damage that results.. NOS1AP binds an initiator of called MKK3 and also moves within the cell to the source of nitric oxide when cells are over-activated.. The location of these proteins in cells causes them to convert the over-stimulation signal into a cell destruction response. The team designed a chemical that prevents NOS1AP from binding the source of nitric oxide. This reduces the cell destruction response in cells of the brain and as a result it limits in rodents.

This translational research was funded mainly by the Academy of Finland, the European Union and the University of Eastern Finland and used the recently developed high-throughput imaging facilities at the A. I. Virtanen Institute. The researchers hope that continuation of their work could lead to improved treatments for diseases such as stroke, epilepsy and chronic conditions like Alzheimer's disease. As NOS1AP is associated with schizophrenia, diabetes and sudden cardiac death, future research in this area may assist the treatment of a wider range of diseases.

Explore further: Chemical reaction keeps stroke-damaged brain from repairing itself

More information: Li, L. et al. Anita C. Truttmann, and Michael J. Courtney. The nNOS-p38MAPK Pathway Is Mediated by NOS1AP during Neuronal Death, Journal of Neuroscience, 8 May 2013, 33(19):8185-8201; doi:10.1523/JNEUROSCI.4578-12.2013. http://www.jneurosci.org/content/33/19/8185.abstract

Related Stories

A coordinated response to cardiac stress

March 1, 2013

Myocardial hypertrophy, a thickening of the heart muscle, is an adaptation that occurs with increased stress on the heart, such as high blood pressure. As the heart muscle expands, it also requires greater blood flow to maintain ...

Bacteria producing nitric oxide extend life in roundworms

February 14, 2013

Nitric oxide, the versatile gas that helps increase blood flow, transmit nerve signals, and regulate immune function, appears to perform one more biological feat— prolonging the life of an organism and fortifying it against ...

Recommended for you

Autism-linked protein crucial for feeling pain

December 1, 2016

Sensory problems are common to autism spectrum disorders. Some individuals with autism may injure themselves repetitively—for example, pulling their hair or banging their heads—because they're less sensitive to pain than ...

Study provides neuronal mechanism for the benefits of fasting

December 1, 2016

A study from the Buck Institute offers for the first time an explanation for the benefits of fasting at the neuronal level, providing a possible mechanism for how fasting can afford health benefits. Publishing on December ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.