Study of the machinery of cells reveals clues to neurological disorder

May 16, 2013 by Kate Mcintosh
Study of the machinery of cells reveals clues to neurological disorder
Peroxisomes (green) and mitochondria (red) in a mammalian cell. The nucleus (blue) contains the cellular DNA.

(Medical Xpress)—Investigation by researchers from the University of Exeter and ETH Zurich has shed new light on a protein which is linked to a common neurological disorder called Charcot-Marie-Tooth disease.

The team has discovered that a protein previously identified on mitochondria - the energy factories of the cell - is also found on the fat-metabolising organelles peroxisomes, suggesting a closer link between the two organelles.

Charcot-Marie-Tooth disease is currently incurable and affects around one in every 2,500 people in the UK, meaning that it is one of the most common inherited neurological disorders, thus understanding the molecular basis of the disease is of great importance. Symptoms can range from tremors and loss of in the feet and legs to difficulties with breathing, swallowing, speaking, hearing and vision.

The research published online in EMBO Reports combines work from University of Exeter Biosciences researcher Dr Michael Schrader and Sofia Guimaraes. The major finding of the study is that the protein GDAP1, originally thought to only be involved in fragmentation of mitochondria, also contributes to the regulation of peroxisome number through their division.

Peroxisomes are small organelles occurring in nearly all cells, from yeast to to humans, and are essential for due to their important role in the metabolism of fatty acids and reactive . Peroxisomes are also of particular interest as they play a key role in ageing.

This current study shows that the division of both mitochondria and peroxisomes follows a similar mechanism, although many of the disease-causing mutations occur in a region of the gene that is more critical for mitochondrial than peroxisomal division.

Dr Michael Schrader said of this project: "This study supports our hypothesis of a closer connection between mitochondria and peroxisomes. We have identified several , which are shared by both organelles, particularly key components of the division machinery, meaning there must be coordinated biogenesis and cross-talk."

As numerous diseases have been linked to problems in the mitochondria, Dr Schrader proposes that this connection could have far-reaching medical implications.

Explore further: Cell metabolism: Muscle loss can be caused by mitochondrial degradation induced by protein Mul1

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.