Become a marathon runner with the protein PGC-1alpha

May 15, 2013
Become a marathon runner with the protein PGC-1α
The protein PGC-1α is associated with high endurance muscles. (Image: KJohansson / wikipedia)

Even with a greater muscle mass, a sprinter cannot win a marathon. His specially-trained and strengthened muscles will fatigue faster than the endurance-trained muscles of a long distance runner. The research group of Prof. Christoph Handschin of the Biozentrum, University of Basel, shows that during endurance exercise the protein PGC-1α shifts the metabolic profile in the muscle. The results are published in the current issue of the journal PNAS.

complete a special training program to improve their endurance capacity. Accordingly, their muscles are able to sustain the provision of energy using aerobic, hence oxygen consuming processes. Untrained athletes and also bodybuilders reach however, in a much earlier stage, a condition where their muscles produce energy without oxygen. This results in the production of lactate in the muscles. At the same time, the muscles begin to fatigue and the legs become heavy.

Less lactate with endurance training

The reason for this difference: the muscles switch their metabolism during . Importantly, amongst others, the production of the protein PGC-1α is stimulated. Mice with a permanently increased PGC-1α develop the same high endurance muscles as those in trained athletes. Handschin and his team were able to show in these mice that PGC-1α prevents the formation and accumulation of lactate in the muscles. For this, the researchers trained the mice for an hour on the treadmill. After a few minutes, the lactic acid rates increased in the untrained mice, followed by performance degradation and exhaustion. Mice with a high PGC-1α, however, maintained their performance levels until the end of the training. Their lactate levels remained low despite a high training load. "As it turned out," said Handschin, "PGC-1α changed the composition of an enzyme complex. This reduced the formation of lactate. Also, the remaining lactate in the muscle is converted and used immediately as energy substrate."

Sport therapy for diabetics

Also in human skeletal muscle, PGC-1α controls the balance between the formation and degradation of lactate. Disturbances in metabolism are common in obese and diabetic patients. The stimulation of PGC-1α production by activity is therefore an important approach to improve the metabolism in these patients. This could help prevent the resulting damage and progressive physical limitations to the body caused by metabolic diseases.

Explore further: 'Marathon mice' elucidate little-known muscle type

More information: Summermatter, S. et al. Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proceedings of the National Academy of Sciences (PNAS), Published online May 6, 2013. www.pnas.org/content/early/2013/05/01/1212976110.abstract

Related Stories

'Marathon mice' elucidate little-known muscle type

January 3, 2007

Researchers report in the January issue of the journal Cell Metabolism, published by Cell Press, the discovery of a genetic "switch" that drives the formation of a poorly understood type of muscle. Moreover, they found, animals ...

Flipping the 'off' switch on cell growth

February 22, 2013

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.