Scientists create new tool for identifying powerful HIV antibodies

May 9, 2013

A team of NIH scientists has developed a new tool to identify broadly neutralizing antibodies (bNAbs) capable of preventing infection by the majority of HIV strains found around the globe, an advance that could help speed HIV vaccine research.

Scientists have long studied HIV-infected individuals whose blood shows powerful neutralization activity because understanding how HIV bNAbs develop and attack the virus can yield clues for HIV vaccine design. But until now, available methods for analyzing did not easily yield specific information about the HIV bNAbs present or the parts of the virus they targeted. In addition, determining where and how HIV bNAbs bind to the virus has been a laborious process involving several complicated techniques and relatively large quantities of blood from individual donors.

The new tool lets scientists determine precisely the HIV bNAbs present in a particular blood sample by analyzing the neutralized there. Called neutralization fingerprinting, the tool is a (a problem-solving procedure) that exploits the large body of data on HIV bNAbs generated in recent years. The neutralization fingerprint of an is a measurement of which it can block and with what intensity. Antibodies that target the same portion of the virus tend to have similar fingerprints.

Blood samples contain mixtures of antibodies, so the new algorithm calculates the specific types of HIV bNAbs present and the proportion of each by comparing the blood's neutralization data with the fingerprints of known HIV bNAbs. This approach is particularly useful when other methods of determining bNAbs targets in a blood sample are not feasible, such as when just a small amount of blood is available. Neutralization fingerprinting also is significantly faster than older analytic methods. According to the researchers who developed the assay, the underlying approach could be applied to the study of human responses to other pathogens, such as influenza and hepatitis C viruses, for which scientists have much information about .

Explore further: Researchers isolate new potent and broadly effective antibodies against HIV

More information: I. Georgiev et al. Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization. Science DOI: 10.1126/science.1233989 (2013).

Related Stories

HIV antibodies that are worth the wait

March 28, 2013

An effective vaccine against HIV-1 remains elusive, but one promising strategy focuses on designer antibodies that have much broader potency than most normal, exquisitely specific antibodies. These broadly neutralizing antibodies ...

Team develops mathematical model to measure hidden HIV

May 8, 2013

(Medical Xpress)—Scientists have long believed that measuring the amount of HIV in a person's blood is an indicator of whether the virus is actively reproducing. A University of Delaware-led research team reports new evidence ...

Recommended for you

Targeting HIV in semen to shut down AIDS

August 18, 2015

There may be two new ways to fight AIDS—using a heat shock protein or a small molecule - to attack fibrils in semen associated with the human immunodeficiency virus (HIV) during the initial phases of infection, according ...

Vitamin D status related to immune response to HIV-1

June 15, 2015

Vitamin D plays an important part in the human immune response and deficiency can leave individuals less able to fight infections like HIV-1. Now an international team of researchers has found that high-dose vitamin D supplementation ...

HVTN 505 vaccine induced antibodies nonspecific for HIV

July 30, 2015

A study by researchers at the National Institute of Allergy and Infectious Diseases and Duke University helps explain why the candidate vaccine used in the HVTN 505 clinical trial was not protective against HIV infection ...

Why HIV's cloak has a long tail

June 2, 2015

Virologists at Emory University School of Medicine, Yerkes National Primate Research Center, and Children's Healthcare of Atlanta have uncovered a critical detail explaining how HIV assembles its infectious yet stealthy clothing.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.