SUMO wrestling cells reveal new protective mechanism target for stroke

May 17, 2013

Scientists investigating the interaction of a group of proteins in the brain responsible for protecting nerve cells from damage have identified a new target that could increase cell survival.

The discovery, made by researchers from the University's School of Biochemistry and published in the EMBO journal with additional comment in Nature Reviews, could eventually lead to new therapies for stroke and other .

The research builds on earlier work by the team which identified a protein, known as SUMO, responsible for controlling the chemical processes which reduce or enhance protection mechanisms for nerve cells in the brain. The team's latest work has now identified the key role that SUMO plays in promoting .

During cell stress a protein response triggers a protective mechanism that allows cell adaptation and survival. This process, known as SUMOylation, involves the attachment of a small protein called Small Ubiquitin-related Modifier (SUMO) to . This pathway is essential for survival of all plant and animal cells because it regulates how proteins interact with each other and can protect nerve cells against damage.

The findings have shown that SUMOylation of a protein called dynamin-related protein 1 (Drp1) is particularly important because it controls the release of from mitochondria that instruct the cell to die in a process called apoptosis.

SUMOylation of Drp1 reduces mitochondrial release of these 'death' signals and helps survive toxic insults associated with stroke. In the future, finding effective methods to enhance SUMOylation of Drp1 may also be beneficial for cell survival in other diseases including heart attacks and Alzheimer's disease.

The European Research Council-funded study, entitled 'SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia' published in the EMBO Journal and led by Professor Jeremy Henley from the University's School of Biochemistry.

Explore further: SUMO defeats protein aggregates that typify Parkinson's disease

More information: doi:10.1038/emboj.2013.65

Related Stories

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.