Transplant experts challenge assumption, describe pathway that leads to organ rejection

Transplant researchers at the University of Pittsburgh School of Medicine challenge a long-held assumption about how biologic pathways trigger immune system rejection of donor organs in a report published online today in the Journal of Clinical Investigation. Their study, sponsored by the National Institutes of Health, suggests a different paradigm is needed to develop better anti-rejection therapies.

Immune system troops called migrate to transplanted organs, fighting the foreign tissue, explained senior author Fadi Lakkis, M.D., Frank & Athena Sarris Chair in Transplantation Biology, professor of surgery, Pitt School of Medicine, and scientific director of the Thomas E. Starzl Transplantation Institute. Until now, scientists have thought these T-cells were beckoned to the site by chemokines, proteins secreted by cells in the lining of the blood vessels, or endothelium, of the organ when it becomes inflamed.

"The prevailing view was that when the endothelium gets inflamed, it gets a little sticky, so T-cells that are zipping by in the bloodstream begin to slow down and bind to chemokines that trigger their arrest and migration into the affected tissue," Dr. Lakkis said. "We decided to test that hypothesis and found out to everyone's surprise that's not the way it works."

If the chemokine receptors on T-cells were blocked, the researchers reasoned, the cascade of immune events would not happen, stalling rejection. So two days after mice received a heart or kidney transplant, they received T-cells treated with pertussis toxin, which irreversibly binds to a key molecule in the receptor to inhibit its activity, and presumably prevent the migration of memory and effector T-cells already sensitized to recognize the foreign proteins of the donor tissue.

Using a technique called two-photon microscopy, which allows real-time visualization of living tissue, they found that pertussis-treated T-cells invaded the donor organs just as they did if they were untreated, leading to organ rejection.

"This showed us that chemokines are not necessary to start the rejection response," Dr. Lakkis said. "So then we wondered which cells were sounding the alarm to the immune system."

The sophisticated microscopy technique revealed that the donor kidney's dendritic cells, which identify antigens or foreign proteins and present them on their cell surfaces to be recognized by other immune cells, "stick their feet," as Dr. Lakkis put it, in the bloodstream, thereby exposing donor surface antigens to the recipient's .

"So, anti- therapies that target chemokine responses have very little effect," he said. "But novel drugs that interfere with antigen presentation by the endothelium or the dendritic cells could be very helpful."

Related Stories

Promising breakthrough for transplant patients

Feb 27, 2013

A team led by Dr. Marie-Josée Hébert from the University of Montreal Hospital Research Centre (CRCHUM) has discovered a new cause of organ rejection in some kidney transplant patients. Her team has identified a new class ...

New study confirms immune cells are guided by gradients

Jan 18, 2013

(Medical Xpress)—A group of researchers in Austria and Switzerland has for the first time proven that immune cells migrate along chemical concentration gradients. This process has long been assumed but ...

Recommended for you

Growing a blood vessel in a week

6 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

9 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments