Alzheimer's disease mouse models point to a potential therapeutic approach

June 26, 2013
Neurofibrillary tangles, immunostained bright red in pyramidal neurons here, are one of the hallmarks of Alzheimer's disease. Credit: Israel Hernandez, UCSB

Building on research published eight years ago in the journal Chemistry and Biology, Kenneth S. Kosik, Harriman Professor in Neuroscience and co-director of the Neuroscience Research Institute (NRI) at UC Santa Barbara, and his team have now applied their findings to two distinct, well-known mouse models, demonstrating a new potential target in the fight against Alzheimer's and other neurodegenerative diseases.

The results were published online June 4 as the Paper of the Week in the Journal of Biological Chemistry. As a Paper of the Week, Kosik's work is among the top 2 percent of manuscripts the journal reviews in a year. Based on significance and overall importance, between 50 and 100 papers are selected for this honor from the more than 6,600 published each year.

Kosik and his research team focused on tau, a protein normally present in the brain, which can develop into neurofibrillary tangles (NFTs) that, along with plaques containing amyloid-ß protein, characterize Alzheimer's disease. When tau becomes pathological, many phosphate groups attach to it, causing it to become dysfunctional and intensely phosphorylated, or hyperphosphorylated. Aggregations of hyperphosphorylated tau are also referred to as paired helical filaments.

"What struck me most while working on this project was how so many people I'd never met came to me to share their stories and personal anxieties about Alzheimer's disease," said Xuemei Zhang, lead co-author and an assistant specialist in the Kosik Lab. "There is no doubt that finding is the only way to help this fast-growing population." Israel Hernandez, a postdoctoral scholar of the NRI and UCSB's Department of Molecular, Cellular and Developmental Biology, is the paper's other lead co-author.

Treatments for hyperphosphorylated tau, one of the main causes of Alzheimer's disease, do not exist. Current treatment is restricted to drugs that increase the concentration of neurotransmitters to promote signaling between neurons.

However, this latest research explores the possibility that a small class of molecules called diaminothiazoles can act as inhibitors of kinase enzymes that phosphorylate tau. Kosik's team studied the toxicity and immunoreactivity of several diaminothiazoles that targeted two key kinases, CDK5/p25 and GSK3ß, in two Alzheimer's disease mouse models. The investigators found that the compounds can efficiently inhibit the enzymes with hardly any toxic effects in the therapeutic dose range.

Treatment with the lead compound in this study, LDN-193594, dramatically affected the prominent neuronal cell loss that accompanies increased CDK5 activity. Diaminothiazole kinase inhibitors not only reduced tau phosphorylation but also exerted a neuroprotective effect in vivo. In addition to reducing the amount of the paired helical in the mice's brains, they also restored their learning and memory abilities during a fear-conditioning assay.

According to the authors, the fact that treatment with diaminothiazole kinase inhibitors reduced the phosphorylation of tau provides strong evidence that small molecular kinase inhibitor treatment could slow the progression of tau pathology. "Given the contribution of both CDK5 and GSK3ß to tau phosphorylation," said Kosik, "effective treatment of tauopathies may require dual kinase targeting."

Madison Cornwell, a Beckman Scholar with UCSB's Center for Science and Engineering Partnerships who worked in Kosik's lab, added: "As a beginning step, we demonstrated that two of these compounds were successful in clearing the brain of tau tangles in a , but someday inhibitors of these kinases may serve to ameliorate the symptoms of Alzheimer's disease in patients."

Explore further: Anti-tau drug improves cognition, decreases tau tangles in Alzheimer's disease models

Related Stories

Neuronal activity induces tau release from healthy neurons

February 15, 2013

Researchers from King's College London have discovered that neuronal activity can stimulate tau release from healthy neurons in the absence of cell death. The results published by Diane Hanger and her colleagues in EMBO reports ...

Recommended for you

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neural basis of multitasking identified

September 1, 2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.