Studies showing how bird flu viruses could adapt to humans offer surveillance and vaccine strategies

Bird flu viruses are potentially highly lethal and pose a global threat, but relatively little is known about why certain strains spread more easily to humans than others. Two studies published today in the journal Cell identify mutations that increase the infectivity of H5N1 and H7N9 viruses through improved binding to receptors in the human respiratory tract. The findings offer much-needed strategies for monitoring the emergence of dangerous bird flu strains capable of infecting humans and for developing more effective vaccines.

"Avian influenza viruses evolve rapidly, and there are many subtypes of these viruses that we need to be concerned about because, in many cases, humans do not have immunity to these newer strains," says senior study author Ram Sasisekharan of the Singapore-MIT Alliance for Research and Technology. "Our findings can be put to use to monitor the evolution of H5N1 and H7N9 viruses in the field as well as in the clinic if and when there is an outbreak."

In the past 10 years, the has infected nearly 600 individuals in several outbreaks around the world, killing about 60% of those infected. And over the past few months, a lethal subtype of the H7N9 virus has been found in at least 131 people, mostly in . Although these viruses do not normally infect humans, over time they can adapt to humans and gain the ability to spread more easily from person to person, underscoring the importance of finding out which mutations could enhance the ability of these viruses to infect humans.

To address this question, Sasisekharan and his team analyzed the structure of the H5N1 and H7N9 viruses, focusing on hemagglutinin (HA)—a type of that binds to in the respiratory tract of hosts. They characterized the set of HA mutations required to increase the preference of the viruses for human receptors, discovering that only a single amino acid change in the HA sequence is necessary for this to occur. Moreover, they found that distinct HA mutations are evolving in the H7N9 virus indicating that currently recommended H7 vaccines would not be effective against this newly emerged virus.

"Right now, there is no vaccine to protect against the H7N9 virus, and our findings could guide efforts to develop effective vaccine strategies," Sasisekharan says.

More information: Tharakaraman et al.: "Glycan Receptor Binding of the Influenza A Virus H7N9 Hemagglutinin." Cell, dx.doi.org/10.1016/j.cell.2013.05.034

Tharakaraman et al.: "Structural Determinants for Naturally Evolving H5N1 Hemagglutinin to Switch its Receptor Specificity." Cell, dx.doi.org/10.1016/j.cell.2013.05.035

Related Stories

Recommended for you

US cautiously optimistic after no new Ebola in 5 days

1 hour ago

With no new Ebola cases in five days, US authorities were cautious but hopeful Monday that the virus has been contained in the United States after a flawed response revealed shortcomings in the system.

Nigeria declared Ebola-free in 'spectacular success'

1 hour ago

Nigeria was declared Ebola-free on Monday in a "spectacular success" in the battle to contain the spread of a virus which is devastating Guinea, Sierra Leone and Liberia where more than 4,500 people have died.

EU says 'increased' effort needed to tackle Ebola

2 hours ago

European Union foreign ministers agreed Monday to step up efforts to contain Ebola to prevent it becoming a global threat, including ensuring proper care for international health workers.

User comments