Studies showing how bird flu viruses could adapt to humans offer surveillance and vaccine strategies

Bird flu viruses are potentially highly lethal and pose a global threat, but relatively little is known about why certain strains spread more easily to humans than others. Two studies published today in the journal Cell identify mutations that increase the infectivity of H5N1 and H7N9 viruses through improved binding to receptors in the human respiratory tract. The findings offer much-needed strategies for monitoring the emergence of dangerous bird flu strains capable of infecting humans and for developing more effective vaccines.

"Avian influenza viruses evolve rapidly, and there are many subtypes of these viruses that we need to be concerned about because, in many cases, humans do not have immunity to these newer strains," says senior study author Ram Sasisekharan of the Singapore-MIT Alliance for Research and Technology. "Our findings can be put to use to monitor the evolution of H5N1 and H7N9 viruses in the field as well as in the clinic if and when there is an outbreak."

In the past 10 years, the has infected nearly 600 individuals in several outbreaks around the world, killing about 60% of those infected. And over the past few months, a lethal subtype of the H7N9 virus has been found in at least 131 people, mostly in . Although these viruses do not normally infect humans, over time they can adapt to humans and gain the ability to spread more easily from person to person, underscoring the importance of finding out which mutations could enhance the ability of these viruses to infect humans.

To address this question, Sasisekharan and his team analyzed the structure of the H5N1 and H7N9 viruses, focusing on hemagglutinin (HA)—a type of that binds to in the respiratory tract of hosts. They characterized the set of HA mutations required to increase the preference of the viruses for human receptors, discovering that only a single amino acid change in the HA sequence is necessary for this to occur. Moreover, they found that distinct HA mutations are evolving in the H7N9 virus indicating that currently recommended H7 vaccines would not be effective against this newly emerged virus.

"Right now, there is no vaccine to protect against the H7N9 virus, and our findings could guide efforts to develop effective vaccine strategies," Sasisekharan says.

More information: Tharakaraman et al.: "Glycan Receptor Binding of the Influenza A Virus H7N9 Hemagglutinin." Cell, dx.doi.org/10.1016/j.cell.2013.05.034

Tharakaraman et al.: "Structural Determinants for Naturally Evolving H5N1 Hemagglutinin to Switch its Receptor Specificity." Cell, dx.doi.org/10.1016/j.cell.2013.05.035

Related Stories

Recommended for you

Nigeria confirms two new Ebola cases (Update)

1 hour ago

Two new cases of Ebola have emerged in Nigeria and, in an alarming development, they are outside the group of caregivers who treated an airline passenger who arrived with Ebola and died, Health Minister Onyebuchi ...

Senegal closes border as UN warns on Ebola flare-up

6 hours ago

Senegal has become the latest country to seal its border with a west African neighbour to ward off the deadly Ebola virus, as the new UN pointman on the epidemic said preparations must be made for a possible flare-up of the ...

Climate change could see dengue fever come to Europe

6 hours ago

Dengue fever could make headway in popular European holiday destinations if climate change continues on its predicted trajectory, according to research published in open access journal BMC Public Health.

American Ebola doc: 'I am thrilled to be alive'

14 hours ago

Calling it a "miraculous day," an American doctor infected with Ebola left his isolation unit and warmly hugged his doctors and nurses on Thursday, showing the world that he poses no public health threat ...

User comments