Studies showing how bird flu viruses could adapt to humans offer surveillance and vaccine strategies

Bird flu viruses are potentially highly lethal and pose a global threat, but relatively little is known about why certain strains spread more easily to humans than others. Two studies published today in the journal Cell identify mutations that increase the infectivity of H5N1 and H7N9 viruses through improved binding to receptors in the human respiratory tract. The findings offer much-needed strategies for monitoring the emergence of dangerous bird flu strains capable of infecting humans and for developing more effective vaccines.

"Avian influenza viruses evolve rapidly, and there are many subtypes of these viruses that we need to be concerned about because, in many cases, humans do not have immunity to these newer strains," says senior study author Ram Sasisekharan of the Singapore-MIT Alliance for Research and Technology. "Our findings can be put to use to monitor the evolution of H5N1 and H7N9 viruses in the field as well as in the clinic if and when there is an outbreak."

In the past 10 years, the has infected nearly 600 individuals in several outbreaks around the world, killing about 60% of those infected. And over the past few months, a lethal subtype of the H7N9 virus has been found in at least 131 people, mostly in . Although these viruses do not normally infect humans, over time they can adapt to humans and gain the ability to spread more easily from person to person, underscoring the importance of finding out which mutations could enhance the ability of these viruses to infect humans.

To address this question, Sasisekharan and his team analyzed the structure of the H5N1 and H7N9 viruses, focusing on hemagglutinin (HA)—a type of that binds to in the respiratory tract of hosts. They characterized the set of HA mutations required to increase the preference of the viruses for human receptors, discovering that only a single amino acid change in the HA sequence is necessary for this to occur. Moreover, they found that distinct HA mutations are evolving in the H7N9 virus indicating that currently recommended H7 vaccines would not be effective against this newly emerged virus.

"Right now, there is no vaccine to protect against the H7N9 virus, and our findings could guide efforts to develop effective vaccine strategies," Sasisekharan says.

More information: Tharakaraman et al.: "Glycan Receptor Binding of the Influenza A Virus H7N9 Hemagglutinin." Cell, dx.doi.org/10.1016/j.cell.2013.05.034

Tharakaraman et al.: "Structural Determinants for Naturally Evolving H5N1 Hemagglutinin to Switch its Receptor Specificity." Cell, dx.doi.org/10.1016/j.cell.2013.05.035

Related Stories

Recommended for you

ECOWAS trains health workers to fight Ebola

56 minutes ago

West Africa's regional bloc ECOWAS said on Sunday it will train 150 health workers this week to help tackle the deadly Ebola disease in the worst hit countries; Guinea, Liberia and Sierra Leone.

US looking past Ebola to prepare for next outbreak

10 hours ago

The next Ebola or the next SARS. Maybe even the next HIV. Even before the Ebola epidemic in West Africa is brought under control, U.S. public health officials are girding for the next health disaster.

Can robots help stop the Ebola outbreak?

19 hours ago

The US military has enlisted a new germ-killing weapon in the fight against Ebola—a four-wheeled robot that can disinfect a room in minutes with pulses of ultraviolet light.

New bird flu case in Germany

19 hours ago

A worrying new strain of bird flu has been observed for the first time in a wild bird in northern Germany, the agriculture ministry said Saturday.

Mali announces new Ebola case

Nov 22, 2014

Mali announced Saturday a new case of Ebola in a man who is fighting for his life in an intensive care unit in the capital Bamako.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.